scholarly journals Calibration of Numerical Model for Shoreline Change Prediction Using Satellite Imagery Data

2015 ◽  
Vol 19 (3) ◽  
pp. 113 ◽  
Author(s):  
Sigit Sutikno ◽  
Keisuke Murakami ◽  
Dwi Puspo Handoyo ◽  
Manyuk Fauzi
2015 ◽  
Vol 19 (3) ◽  
pp. 113
Author(s):  
Sigit Sutikno ◽  
Keisuke Murakami ◽  
Dwi Puspo Handoyo ◽  
Manyuk Fauzi

2016 ◽  
Vol 33 ◽  
pp. 36-43 ◽  
Author(s):  
Sri Malahayati Yusuf ◽  
Kukuh Murtilaksono ◽  
Mahendra Harjianto ◽  
Endah Herlina

2021 ◽  
Author(s):  
Edy Irwansyah ◽  
Alexander A. Santoso. Gunawan ◽  
Calvin Surya ◽  
Dewa Ayu Defina Audrey Nathania

Author(s):  
Claudia Canedo-Rosso ◽  
Stefan Hochrainer-Stigler ◽  
Georg Pflug ◽  
Bruno Condori ◽  
Ronny Berndtsson

Abstract. Drought is a major natural hazard in the Bolivian Altiplano that causes large losses to farmers, especially during positive ENSO phases. However, empirical data for drought risk estimation purposes are scarce and spatially uneven distributed. Due to these limitations, similar to many other regions in the world, we tested the performance of satellite imagery data for providing precipitation and temperature data. The results show that droughts can be better predicted using a combination of satellite imagery and ground-based available data. Consequently, the satellite climate data were associated with the Normalized Difference Vegetation Index (NDVI) in order to evaluate the crop production variability. Moreover, NDVI was used to target specific drought hotspot regions. Furthermore, during positive ENSO phase (El Niño years), a significant decrease in crop yields can be expected and we indicate areas where losses will be most pronounced. The results can be used for emergency response operations and enable a pro-active approach to disaster risk management against droughts. This includes economic-related and risk reduction strategies such as insurance and irrigation.


Satellite imagery shows that fronts and frontal eddies are widespread on the northwest European continental shelf. The implications for the numerical modelling of transports (for example, of pollutants) are discussed. A brief review of some models of shelf circulation is given. It is argued that to include fronts in models of shelf circulation requires a better understanding of dynamics on the frontal scale. A three-dimensional numerical model of eddy formation in a coastal front is then presented that reproduces many of the observed features.


Sign in / Sign up

Export Citation Format

Share Document