scholarly journals μ-Hankel operators on Hilbert spaces

2021 ◽  
Vol 41 (6) ◽  
pp. 881-898
Author(s):  
Adolf Mirotin ◽  
Ekaterina Kuzmenkova
Author(s):  
Svante Janson
Keyword(s):  

2020 ◽  
Vol Accepted ◽  
Author(s):  
Oluwatosin Temitope Mewomo ◽  
Hammed Anuoluwapo Abass ◽  
Chinedu Izuchukwu ◽  
Olawale Kazeem Oyewole

2018 ◽  
Vol 48 (2) ◽  
pp. 99-111
Author(s):  
Gopal Datt ◽  
Anshika Mittal
Keyword(s):  

Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3237-3243
Author(s):  
In Hwang ◽  
In Kim ◽  
Sumin Kim

In this note we give a connection between the closure of the range of block Hankel operators acting on the vector-valued Hardy space H2Cn and the left coprime factorization of its symbol. Given a subset F ? H2Cn, we also consider the smallest invariant subspace S*F of the backward shift S* that contains F.


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


Sign in / Sign up

Export Citation Format

Share Document