scholarly journals A note on paper “a simple fast method in finding the analytical solutions to a class of nonlinear partial differential equations”

2005 ◽  
Vol 54 (3) ◽  
pp. 1036
Author(s):  
Xie Yuan-Xi ◽  
Tang Jia-Shi
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Shailesh A. Bhanotar ◽  
Mohammed K. A. Kaabar

In this paper, a novel analytical method for solving nonlinear partial differential equations is studied. This method is known as triple Laplace transform decomposition method. This method is generalized in the sense of conformable derivative. Important results and theorems concerning this method are discussed. A new algorithm is proposed to solve linear and nonlinear partial differential equations in three dimensions. Moreover, some examples are provided to verify the performance of the proposed algorithm. This method presents a wide applicability to solve nonlinear partial differential equations in the sense of conformable derivative.


2015 ◽  
Vol 2 (7) ◽  
pp. 140406 ◽  
Author(s):  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
H. Koppelaar

Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced ( G ′/ G )-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


Sign in / Sign up

Export Citation Format

Share Document