Application of the exp(-φ)-expansion method to the Pochhammer-Chree equation

Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.

2015 ◽  
Vol 2 (7) ◽  
pp. 140406 ◽  
Author(s):  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
H. Koppelaar

Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced ( G ′/ G )-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Şamil Akçaği ◽  
Tuğba Aydemir

AbstractIn this paper, firstly, we give a connection between well known and commonly used methods called the $\left( {{{G'} \over G}} \right)$ -expansion method and the modified extended tanh method which are often used for finding exact solutions of nonlinear partial differential equations (NPDEs). We demonstrate that giving a convenient transformation and formula, all of the solutions obtained by using the $\left( {{{G'} \over G}} \right)$ - expansion method can be converted the solutions obtained by using the modified extended tanh method. Secondly, contrary to the assertion in some papers, the $\left( {{{G'} \over G}} \right)$-expansion method gives neither all of the solutions obtained by using the other method nor new solutions for NPDEs. Namely, while the modified extended tanh method gives more solutions in a straightforward, concise and elegant manner without reproducing a lot of different forms of the same solution. On the other hand, the $\left( {{{G'} \over G}} \right)$-expansion method provides less solutions in a rather cumbersome form. Lastly, we obtain new exact solutions for the Lonngren wave equation as an illustrative example by using these methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Sanoe Koonprasert

We apply the G′/G2-expansion method to construct exact solutions of three interesting problems in physics and nanobiosciences which are modeled by nonlinear partial differential equations (NPDEs). The problems to which we want to obtain exact solutions consist of the Benny-Luke equation, the equation of nanoionic currents along microtubules, and the generalized Hirota-Satsuma coupled KdV system. The obtained exact solutions of the problems via using the method are categorized into three types including trigonometric solutions, exponential solutions, and rational solutions. The applications of the method are simple, efficient, and reliable by means of using a symbolically computational package. Applying the proposed method to the problems, we have some innovative exact solutions which are different from the ones obtained using other methods employed previously.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmad Neirameh ◽  
Foroud Parvaneh

AbstractExact solutions to nonlinear differential equations play an undeniable role in various branches of science. These solutions are often used as reliable tools in describing the various quantitative and qualitative features of nonlinear phenomena observed in many fields of mathematical physics and nonlinear sciences. In this paper, the generalized exponential rational function method and the extended sinh-Gordon equation expansion method are applied to obtain approximate analytical solutions to the space-time conformable coupled Cahn–Allen equation, the space-time conformable coupled Burgers equation, and the space-time conformable Fokas equation. Novel approximate exact solutions are obtained. The conformable derivative is considered to obtain the approximate analytical solutions under constraint conditions. Numerical simulations obtained by the proposed methods indicate that the approaches are very effective. Both techniques employed in this paper have the potential to be used in solving other models in mathematics and physics.


Author(s):  
Hasan Bulut ◽  
Khalid ◽  
Ban Jamal

In this research paper, we investigate some novel soliton solutions to the perturbed Fokas-Lenells equation by using the (m + 1/G') expansion method. Some new solutions are obtained and they are plotted in two and three dimensions. This technique appears as a suitable, applicable, and efficient method to search for the exact solutions of nonlinear partial differential equations in a wide range. All gained optical soliton solutions are substituted into the FokasLenells equation and they verify it. The constraint conditions are also given.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Hasibun Naher ◽  
Farah Aini Abdullah ◽  
M. Ali Akbar

We construct the traveling wave solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG) equation by the -expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, the trigonometric, and the rational functions. It is shown that the -expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document