scholarly journals Analytical solutions to new forms of two nonlinear partial differential equations via two variable expansion method

Author(s):  
Sümeyra Kara ◽  
Ömer Ünsal
2015 ◽  
Vol 2 (7) ◽  
pp. 140406 ◽  
Author(s):  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
H. Koppelaar

Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced ( G ′/ G )-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


2021 ◽  
Vol 5 (4) ◽  
pp. 238
Author(s):  
Li Yan ◽  
Gulnur Yel ◽  
Ajay Kumar ◽  
Haci Mehmet Baskonus ◽  
Wei Gao

This paper presents a novel and general analytical approach: the rational sine-Gordon expansion method and its applications to the nonlinear Gardner and (3+1)-dimensional mKdV-ZK equations including a conformable operator. Some trigonometric, periodic, hyperbolic and rational function solutions are extracted. Physical meanings of these solutions are also presented. After choosing suitable values of the parameters in the results, some simulations are plotted. Strain conditions for valid solutions are also reported in detail.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Sanoe Koonprasert

We apply the G′/G2-expansion method to construct exact solutions of three interesting problems in physics and nanobiosciences which are modeled by nonlinear partial differential equations (NPDEs). The problems to which we want to obtain exact solutions consist of the Benny-Luke equation, the equation of nanoionic currents along microtubules, and the generalized Hirota-Satsuma coupled KdV system. The obtained exact solutions of the problems via using the method are categorized into three types including trigonometric solutions, exponential solutions, and rational solutions. The applications of the method are simple, efficient, and reliable by means of using a symbolically computational package. Applying the proposed method to the problems, we have some innovative exact solutions which are different from the ones obtained using other methods employed previously.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Shailesh A. Bhanotar ◽  
Mohammed K. A. Kaabar

In this paper, a novel analytical method for solving nonlinear partial differential equations is studied. This method is known as triple Laplace transform decomposition method. This method is generalized in the sense of conformable derivative. Important results and theorems concerning this method are discussed. A new algorithm is proposed to solve linear and nonlinear partial differential equations in three dimensions. Moreover, some examples are provided to verify the performance of the proposed algorithm. This method presents a wide applicability to solve nonlinear partial differential equations in the sense of conformable derivative.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Khaled A. Gepreel

We use the improved general mapping deformation method based on the generalized Jacobi elliptic functions expansion method to construct some of the generalized Jacobi elliptic solutions for some nonlinear partial differential equations in mathematical physics via the generalized nonlinear Klein-Gordon equation and the classical Boussinesq equations. As a result, some new generalized Jacobi elliptic function-like solutions are obtained by using this method. This method is more powerful to find the exact solutions for nonlinear partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document