scholarly journals Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection

2014 ◽  
Vol 63 (19) ◽  
pp. 194102
Author(s):  
Xiao Xia ◽  
Song Hang ◽  
Wang Liang ◽  
Wang Zong-Jie ◽  
Lu Hong
2007 ◽  
Vol E90-B (9) ◽  
pp. 2376-2381 ◽  
Author(s):  
W. C. KHOR ◽  
M. E. BIALKOWSKI ◽  
A. ABBOSH ◽  
N. SEMAN ◽  
S. CROZIER

2015 ◽  
Vol 9 (10) ◽  
pp. 1009-1014 ◽  
Author(s):  
Malyhe Jalilvand ◽  
Xuyang Li ◽  
Lukasz Zwirello ◽  
Thomas Zwick

2016 ◽  
Vol 36 (4) ◽  
pp. 225-235 ◽  
Author(s):  
Sidi Mohammed Chouiti ◽  
Lotfi Merad ◽  
Sidi Mohammed Meriah ◽  
Xavier Raimundo ◽  
Abdelmalik Taleb-Ahmed

2021 ◽  
Author(s):  
Dalia Mohamed N M K Elsheakh ◽  
Soha A. Alsherif ◽  
Angie R. Eldamak

Abstract This paper investigate different available breast cancer imaging methods, particularly microwave imaging techniques (MI). The building block of a radar-based microwave imaging system using a flexible antenna element that could be integrated in a clothing item. It could be accessible to women everywhere easily and at an affordable price which will help them with early breast cancer detection. Two different flexible monopole antennas on a cotton substrate are designed for radar-based microwave imaging. The ultra-wideband (UWB) fully textile sensor shaped as rectangular and circular monopole antenna for breast cancer detection (BCD) are designed. The antenna operates at impedance bandwidth \(\le\)-10dB in the operating band extend from 2.5 to 9 GHz with an overall footprint of 50 × 50 mm2. Simulated detection and bending capacity then proceeded to fabricate a breast phantom and a tumor sample with parameters that mimic these of the human breast’s healthy and malignant tissue. Measurements highly match with the simulation results as well as the performance of antenna before and after subjected to washing is measured and compared. Moreover, simulations of antenna in proximity to breast model with and without tumor are also conducted. Finally the specific absorption rate (SAR) is also calculated to insure that the developed textile sensor is safe to be deployed on-body. The proposed work demonstrates the potential to develop wearable microwave imaging system using fully textile antennas.


Sign in / Sign up

Export Citation Format

Share Document