A Property of the Moreau–Yosida Regularization

2018 ◽  
Author(s):  
Mihail Hamamdjiev
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Qiyuan Wei ◽  
Liwei Zhang

<p style='text-indent:20px;'>An accelerated differential equation system with Yosida regularization and its numerical discretized scheme, for solving solutions to a generalized equation, are investigated. Given a maximal monotone operator <inline-formula><tex-math id="M1">\begin{document}$ T $\end{document}</tex-math></inline-formula> on a Hilbert space, this paper will study the asymptotic behavior of the solution trajectories of the differential equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} \dot{x}(t)+T_{\lambda(t)}(x(t)-\alpha(t)T_{\lambda(t)}(x(t))) = 0,\quad t\geq t_0\geq 0, \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>to the solution set <inline-formula><tex-math id="M2">\begin{document}$ T^{-1}(0) $\end{document}</tex-math></inline-formula> of a generalized equation <inline-formula><tex-math id="M3">\begin{document}$ 0 \in T(x) $\end{document}</tex-math></inline-formula>. With smart choices of parameters <inline-formula><tex-math id="M4">\begin{document}$ \lambda(t) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \alpha(t) $\end{document}</tex-math></inline-formula>, we prove the weak convergence of the trajectory to some point of <inline-formula><tex-math id="M6">\begin{document}$ T^{-1}(0) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ \|\dot{x}(t)\|\leq {\rm O}(1/t) $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M8">\begin{document}$ t\rightarrow +\infty $\end{document}</tex-math></inline-formula>. Interestingly, under the upper Lipshitzian condition, strong convergence and faster convergence can be obtained. For numerical discretization of the system, the uniform convergence of the Euler approximate trajectory <inline-formula><tex-math id="M9">\begin{document}$ x^{h}(t) \rightarrow x(t) $\end{document}</tex-math></inline-formula> on interval <inline-formula><tex-math id="M10">\begin{document}$ [0,+\infty) $\end{document}</tex-math></inline-formula> is demonstrated when the step size <inline-formula><tex-math id="M11">\begin{document}$ h \rightarrow 0 $\end{document}</tex-math></inline-formula>.</p>


2020 ◽  
Vol 26 ◽  
pp. 34 ◽  
Author(s):  
Irwin Yousept

We analyze a class of hyperbolic Maxwell variational inequalities of the second kind. By means of a local boundedness assumption on the subdifferential of the underlying nonlinearity, we prove a well-posedness result, where the main tools for the proof are the semigroup theory for Maxwell’s equations, the Yosida regularization and the subdifferential calculus. The second part of the paper focuses on a more general case omitting the local boundedness assumption. In this case, taking into account more regular initial data and test functions, we are able to prove a weaker existence result through the use of the minimal section operator associated with the Nemytskii operator of the governing subdifferential. Eventually, we transfer the developed well-posedness results to the case involving Faraday’s law, which in particular allows us to improve the regularity property of the electric field in the weak existence result.


2018 ◽  
Vol 39 (3) ◽  
pp. 1276-1295 ◽  
Author(s):  
L Adam ◽  
M Hintermüller ◽  
T M Surowiec

Abstract An efficient, function-space-based second-order method for the $H^1$-projection onto the Gibbs simplex is presented. The method makes use of the theory of semismooth Newton methods in function spaces as well as Moreau–Yosida regularization and techniques from parametric optimization. A path-following technique is considered for the regularization parameter updates. A rigorous first- and second-order sensitivity analysis of the value function for the regularized problem is provided to justify the update scheme. The viability of the algorithm is then demonstrated for two applications found in the literature: binary image inpainting and labeled data classification. In both cases, the algorithm exhibits mesh-independent behavior.


2008 ◽  
Vol 19 (1) ◽  
pp. 39-61 ◽  
Author(s):  
Fanwen Meng ◽  
Gongyun Zhao ◽  
Mark Goh ◽  
Robert De Souza

2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Yaping Hu

We propose an extended multivariate spectral gradient algorithm to solve the nonsmooth convex optimization problem. First, by using Moreau-Yosida regularization, we convert the original objective function to a continuously differentiable function; then we use approximate function and gradient values of the Moreau-Yosida regularization to substitute the corresponding exact values in the algorithm. The global convergence is proved under suitable assumptions. Numerical experiments are presented to show the effectiveness of this algorithm.


2019 ◽  
Vol 29 (06) ◽  
pp. 1950002 ◽  
Author(s):  
Qiang Wu ◽  
Yu Zhang ◽  
Ju Liu ◽  
Jiande Sun ◽  
Andrzej Cichocki ◽  
...  

Event-related potentials (ERPs) especially P300 are popular effective features for brain–computer interface (BCI) systems based on electroencephalography (EEG). Traditional ERP-based BCI systems may perform poorly for small training samples, i.e. the undersampling problem. In this study, the ERP classification problem was investigated, in particular, the ERP classification in the high-dimensional setting with the number of features larger than the number of samples was studied. A flexible group sparse discriminative analysis algorithm based on Moreau–Yosida regularization was proposed for alleviating the undersampling problem. An optimization problem with the group sparse criterion was presented, and the optimal solution was proposed by using the regularized optimal scoring method. During the alternating iteration procedure, the feature selection and classification were performed simultaneously. Two P300-based BCI datasets were used to evaluate our proposed new method and compare it with existing standard methods. The experimental results indicated that the features extracted via our proposed method are efficient and provide an overall better P300 classification accuracy compared with several state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document