Introduction to the Colorado River Negotiations

Author(s):  
Bruno Verdini Trejo

Introduces the Colorado River case, presenting an overview of the chapters to follow, as well as providing context for analysis of the binational negotiations with a summary of the 2012 landmark Minute 319 agreement between the United States and Mexico. Outlines the key players, the decades-long history of protracted disputes over the waters of the river basin and the environmental resources of the Colorado River Delta, the increasing challenges in the face of extraordinary drought and climate change, and the mutual gains approach that underpinned the negotiations.

2018 ◽  
Vol 19 (10) ◽  
pp. 1637-1650 ◽  
Author(s):  
Kurt C. Solander ◽  
Katrina E. Bennett ◽  
Sean W. Fleming ◽  
David S. Gutzler ◽  
Emily M. Hopkins ◽  
...  

Abstract The Colorado River basin (CRB) is one of the most important watersheds for energy, water, and food security in the United States. CRB water supports 15% of U.S. food production, more than 50 GW of electricity capacity, and one of the fastest growing populations in the United States. Energy–water–food nexus impacts from climate change are projected to increase in the CRB. These include a higher incidence of extreme events, widespread snow-to-rain regime shifts, and a higher frequency and magnitude of climate-driven disturbances. Here, we empirically show how the historical annual streamflow maximum and hydrograph centroid timing relate to temperature, precipitation, and snow. In addition, we show how these hydroclimatic relationships vary with elevation and how the elevation dependence has changed over this historical observational record. We find temperature and precipitation have a relatively weak relation (|r| < 0.3) to interannual variations in streamflow timing and extremes at low elevations (<1500 m), but a relatively strong relation (|r| > 0.5) at high elevations (>2300 m) where more snow occurs in the CRB. The threshold elevation where this relationship is strongest (|r| > 0.5) is moving uphill at a rate of up to 4.8 m yr−1 (p = 0.11) and 6.1 m yr−1 (p = 0.01) for temperature and precipitation, respectively. Based on these findings, we hypothesize where warming and precipitation-related streamflow changes are likely to be most severe using a watershed-scale vulnerability map to prioritize areas for further research and to inform energy, water, and food resource management in the CRB.


Sign in / Sign up

Export Citation Format

Share Document