scholarly journals Decision letter: Mouse V1 population correlates of visual detection rely on heterogeneity within neuronal response patterns

2015 ◽  
eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Jorrit S Montijn ◽  
Pieter M Goltstein ◽  
Cyriel MA Pennartz

Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations.


1964 ◽  
Vol 27 (6) ◽  
pp. 1174-1191 ◽  
Author(s):  
George Moushegian ◽  
Allen Rupert ◽  
Milton A. Whitcomb

2018 ◽  
Author(s):  
Raphael Wallroth ◽  
Kathrin Ohla

The categorization of food via sensing nutrients or toxins is crucial to the survival of any organism. On ingestion, rapid responses within the gustatory system are required to identify the oral stimulus to guide immediate behaviour (swallowing or expulsion). The way in which the human brain accomplishes this task has so far remained unclear. Using multivariate analysis of 64-channel scalp EEG recordings obtained from 16 volunteers during tasting salty, sweet, sour, or bitter solutions, we found that activity in the delta-frequency range (1-4 Hz; delta power and phase) has information about taste identity in the human brain, with discriminable response patterns at the single-trial level within 130 ms of tasting. Importantly, the latencies of these response patterns predicted the point in time at which participants indicated detection of a taste by pressing a button. Furthermore, taste pattern discrimination was independent of motor-related activation and other taste features such as intensity and valence. On comparison with our previous findings from a passive (delayed) taste-discrimination task (Crouzet et al., 2015), taste-specific neural representations emerged earlier during this active (speeded) taste-detection task, suggesting a goal-dependent flexibility in gustatory response coding. Together, these findings provide the first evidence of a role of delta activity in taste-information coding in humans. Crucially, these neuronal response patterns can be linked to the speed of simple gustatory perceptual decisions, a vital performance index of nutrient sensing.


Sign in / Sign up

Export Citation Format

Share Document