sound stimulation
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 52)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Lester Torres Cadenas ◽  
Hui Cheng ◽  
Catherine J.C. Weisz

The descending auditory system modulates the ascending system at every level. The final descending, or efferent stage, is comprised of lateral olivocochlear (LOC) and medial olivocochlear (MOC) neurons. MOC somata in the ventral brainstem project axons to the cochlea to synapse onto outer hair cells (OHC), inhibiting OHC-mediated cochlear amplification. MOC suppression of OHC function is implicated in cochlear gain control with changing sound intensity, detection of salient stimuli, attention, and protection against acoustic trauma. Thus, sound excites MOC neurons to provide negative feedback of the cochlea. Sound also inhibits MOC neurons via medial nucleus of the trapezoid body (MNTB) neurons. However, MNTB-MOC synapses exhibit short-term depression, suggesting reduced MNTB-MOC inhibition during sustained stimuli. Further, due to high rates of both baseline and sound-evoked activity in MNTB neurons in vivo, MNTB-MOC synapses may be tonically depressed. To probe this, we characterized short-term plasticity of MNTB-MOC synapses in mouse brain slices. We mimicked in vivo-like temperature and extracellular calcium conditions, and in vivo-like activity patterns of fast synaptic activation rates, sustained activation, and prior tonic activity. Synaptic depression was sensitive to extracellular calcium concentration and temperature. During rapid MNTB axon stimulation, post-synaptic currents (PSCs) in MOC neurons summated but with concurrent depression, resulting in smaller, sustained currents, suggesting tonic inhibition of MOC neurons during rapid circuit activity. Low levels of baseline MNTB activity did not significantly reduce responses to subsequent rapid activity that mimics sound stimulation, indicating that, in vivo, MNTB inhibition of MOC neurons persists despite tonic synaptic depression.


2021 ◽  
Author(s):  
Milaine Dominici Sanfins ◽  
Caroline Donadon ◽  
Piotr Henryk Skarzynski ◽  
Maria Francisca Colella-Santos

Electrophysiology is an objective evaluation method that allows investigating the responses of the central auditory nervous system arising from the capture of neuronal responses through surface electrodes. In addition to the possibility of investigating and diagnosing different pathologies, electrophysiology proves to be an effective and effective instrument in monitoring auditory intervention programs. Auditory rehabilitation programs is based on the premise of neuroplasticity that derives from a capacity for neuronal change due to intense sound stimulation, specific and directed to the patient’s needs. Throughout this chapter, current studies that correlate electrophysiology with auditory training programs in different clinical populations will be presented, such as: hearing in typically developed individuals, hearing and school difficulties, hearing and CAPD, hearing and otitis media, hearing and hearing loss, and hearing and voice. Electrophysiological tests are important objective measures in predicting the gains to be expected from auditory training programs.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1699
Author(s):  
Xiang Chen ◽  
Yuwen Huang ◽  
Pan Gao ◽  
Yuexia Lv ◽  
Danna Jia ◽  
...  

Zebrafish is an excellent model for exploring the development of the inner ear. Its inner ear has similar functions to that of humans, specifically in the maintenance of hearing and balance. Mafba is a component of the Maf transcription factor family. It participates in multiple biological processes, but its role in inner-ear development remains poorly understood. In this study, we constructed a mafba knockout (mafba−/−) zebrafish model using CRISPR/Cas9 technology. The mafba−/− mutant inner ear displayed severe impairments, such as enlarged otocysts, smaller or absent otoliths, and insensitivity to sound stimulation. The proliferation of p63+ epidermal stem cells and dlc+ ionocyte progenitors was inhibited in mafba−/− mutants. Moreover, the results showed that mafba deletion induces the apoptosis of differentiated K+-ATPase-rich (NR) cells and H+-ATPase-rich (HR) cells. The activation of p53 apoptosis and G0/G1 cell cycle arrest resulted from DNA damage in the inner-ear region, providing a mechanism to account for the inner ear deficiencies. The loss of homeostasis resulting from disorders of ionocyte progenitors resulted in structural defects in the inner ear and, consequently, loss of hearing. In conclusion, the present study elucidated the function of ionic channel homeostasis and inner-ear development using a zebrafish Mafba model and clarified the possible physiological roles.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2799
Author(s):  
Mone Yamazaki ◽  
Akari Ishida ◽  
Yutaka Suzuki ◽  
Yoshinao Aoki ◽  
Shunji Suzuki ◽  
...  

Global warming has resulted in the loss of anthocyanin accumulation in berry skin. Sound stimulation can be used as a potential method for enhancing fruit color development since many plants recognize sound vibration as an external stimulus and alter their physiological status in response to it. Sound stimulation (sine wave sound at 1000 Hz) enhanced anthocyanin accumulation in grape cultured cells and berry skins in field-grown grapevines at the early stage of ripening. The transcription of UFGT and ACO2, which encode the key enzymes in anthocyanin and ethylene biosynthesis, respectively, was upregulated in grape cultured cells exposed to sound stimulation. In contrast, the transcription of MybA1 and NCED1, which encode a transcription factor for UFGT and a key enzyme in abscisic acid biosynthesis, respectively, was not affected by the sound stimulation. A treatment with an ethylene biosynthesis inhibitor, aminoethoxyvinyl glycine hydrochloride, revered the enhancement of anthocyanin accumulation by sound stimulation. As the promoter assay using a GUS reporter gene demonstrated that UFGT promoter was directly activated by the ethylene-releasing compound ethephon, which enhanced anthocyanin accumulation in grape cultured cells, we conclude that sound stimulation enhanced anthocyanin accumulation through the direct upregulation of UFGT by ethylene biosynthesis. Our findings suggest that sound stimulation contributes to alleviating poor coloration in berry skin as a novel and innovative practical technique in viticulture.


2021 ◽  
Vol 12 ◽  
Author(s):  
Éva Nadon ◽  
Barbara Tillmann ◽  
Arnaud Saj ◽  
Nathalie Gosselin

Daily activities can often be performed while listening to music, which could influence the ability to select relevant stimuli while ignoring distractors. Previous studies have established that the level of arousal of music (e.g., relaxing/stimulating) has the ability to modulate mood and affect the performance of cognitive tasks. The aim of this research was to explore the effect of relaxing and stimulating background music on selective attention. To this aim, 46 healthy adults performed a Stroop-type task in five different sound environments: relaxing music, stimulating music, relaxing music-matched noise, stimulating music-matched noise, and silence. Results showed that response times for incongruent and congruent trials as well as the Stroop interference effect were similar across conditions. Interestingly, results revealed a decreased error rate for congruent trials in the relaxing music condition as compared to the relaxing music-matched noise condition, and a similar tendency between relaxing music and stimulating music-matched noise. Taken together, the absence of difference between background music and silence conditions suggest that they have similar effects on adult’s selective attention capacities, while noise seems to have a detrimental impact, particularly when the task is easier cognitively. In conclusion, the type of sound stimulation in the environment seems to be a factor that can affect cognitive tasks performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Johannes Allgaier ◽  
Winfried Schlee ◽  
Berthold Langguth ◽  
Thomas Probst ◽  
Rüdiger Pryss

AbstractTinnitus is an auditory phantom perception in the absence of an external sound stimulation. People with tinnitus often report severe constraints in their daily life. Interestingly, indications exist on gender differences between women and men both in the symptom profile as well as in the response to specific tinnitus treatments. In this paper, data of the TrackYourTinnitus platform (TYT) were analyzed to investigate whether the gender of users can be predicted. In general, the TYT mobile Health crowdsensing platform was developed to demystify the daily and momentary variations of tinnitus symptoms over time. The goal of the presented investigation is a better understanding of gender-related differences in the symptom profiles of users from TYT. Based on two questionnaires of TYT, four machine learning based classifiers were trained and analyzed. With respect to the provided daily answers, the gender of TYT users can be predicted with an accuracy of 81.7%. In this context, worries, difficulties in concentration, and irritability towards the family are the three most important characteristics for predicting the gender. Note that in contrast to existing studies on TYT, daily answers to the worst symptom question were firstly investigated in more detail. It was found that results of this question significantly contribute to the prediction of the gender of TYT users. Overall, our findings indicate gender-related differences in tinnitus and tinnitus-related symptoms. Based on evidence that gender impacts the development of tinnitus, the gathered insights can be considered relevant and justify further investigations in this direction.


Metabolites ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 605
Author(s):  
Alastair Harris ◽  
Melodie A. Lindsay ◽  
Austen R. D. Ganley ◽  
Andrew Jeffs ◽  
Silas G. Villas-Boas

The biological effect of sound on microorganisms has been a field of interest for many years, with studies mostly focusing on ultrasonic and infrasonic vibrations. In the audible range (20 Hz to 20 kHz), sound has been shown to both increase colony formation and disrupt microbial growth, depending upon the organism and frequency of sound used. In the brewer’s yeast Saccharomyces cerevisiae, sound has been shown to significantly alter growth, increase alcohol production, and affect the metabolite profile. In this study, S. cerevisiae was exposed to a continuous 90 dB @ 20 μPa tone at different frequencies (0.1 kHz, 10 kHz, and silence). Fermentation characteristics were monitored over a 50-h fermentation in liquid malt extract, with a focus on growth rate and biomass yield. The profile of volatile metabolites at the subsequent stationary phase of the ferment was characterised by headspace gas chromatography–mass spectrometry. Sound treatments resulted in a 23% increase in growth rate compared to that of silence. Subsequent analysis showed significant differences in the volatilomes between all experimental conditions. Specifically, aroma compounds associated with citrus notes were upregulated with the application of sound. Furthermore, there was a pronounced difference in the metabolites produced in high- versus low-frequency sounds. This suggests industrial processes, such as beer brewing, could be modulated by the application of audible sound at specific frequencies during growth.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5169
Author(s):  
Marek Piorecky ◽  
Vlastimil Koudelka ◽  
Vaclava Piorecka ◽  
Jan Strobl ◽  
Daniela Dudysova ◽  
...  

Slow-wave synchronous acoustic stimulation is a promising research and therapeutic tool. It is essential to clearly understand the principles of the synchronization methods, to know their performances and limitations, and, most importantly, to have a clear picture of the effect of stimulation on slow-wave activity (SWA). This paper covers the mentioned and currently missing parts of knowledge that are essential for the appropriate development of the method itself and future applications. Artificially streamed real sleep EEG data were used to quantitatively compare the two currently used real-time methods: the phase-locking loop (PLL) and the fixed-step stimulus in our own implementation. The fixed-step stimulation method was concluded to be more reliable and practically applicable compared to the PLL method. The sleep experiment with chronic insomnia patients in our sleep laboratory was analyzed in order to precisely characterize the effect of sound stimulation during deep sleep. We found that there is a significant phase synchronization of delta waves, which were shown to be the most sensitive metric of the effect of acoustic stimulation compared to commonly used averaged signal and power analyses. This finding may change the understanding of the effect and function of the SWA stimulation described in the literature.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0252914
Author(s):  
Maxime Guyon ◽  
Cyrielle Chea ◽  
Davy Laroche ◽  
Isabelle Fournel ◽  
Audrey Baudet ◽  
...  

Introduction Our objective was to develop and to evaluate a system to measure latency and threshold of pendular motion perception based on a swinging bed. Materials and methods This prospective study included 30 healthy adults (age: 32 ± 12 years). All subjects were tested twice with a 10 min. interval. A second trial was conducted 2 to 15 days after. A rehabilitation swinging bed was connected to an electronic device emitting a beep at the beginning of each oscillation phase with an adjustable time lag. Subjects were blindfolded and auditory cues other than the beep were minimized. The acceleration threshold was measured by letting the bed oscillate freely until a natural break and asking the patient when he did not perceive any motion. The perception latency was determined by asking the patient to indicate whether the beep and the peak of each oscillation were synchronous. The time lag between sound and peak of the head position was swept from -750 to +750 ms by 50 ms increments. Results The mean acceleration threshold was 9.2±4.60 cm/s2. The range width of the synchronous perception interval was estimated as 535±190 ms. The point of subjective synchronicity defined as the center of this interval was -195±106 ms (n = 30). The test-retest evaluation in the same trial showed an acceptable reproducibility for the acceleration threshold and good to excellent for all parameters related to sound-movement latency. Conclusion Swinging bed combined to sound stimulation can provide reproducible information on movement perception in a simple and non-invasive manner with highly reproducible results.


Sign in / Sign up

Export Citation Format

Share Document