primary sensory cortex
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 29)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 23 (1) ◽  
pp. 149
Author(s):  
Schuichi Koizumi ◽  
Eiji Shigetomi ◽  
Fumikazu Sano ◽  
Kozo Saito ◽  
Sun Kwang Kim ◽  
...  

In pathological brain conditions, glial cells become reactive and show a variety of responses. We examined Ca2+ signals in pathological brains and found that reactive astrocytes share abnormal Ca2+ signals, even in different types of diseases. In a neuropathic pain model, astrocytes in the primary sensory cortex became reactive and showed frequent Ca2+ signals, resulting in the production of synaptogenic molecules, which led to misconnections of tactile and pain networks in the sensory cortex, thus causing neuropathic pain. In an epileptogenic model, hippocampal astrocytes also became reactive and showed frequent Ca2+ signals. In an Alexander disease (AxD) model, hGFAP-R239H knock-in mice showed accumulation of Rosenthal fibers, a typical pathological marker of AxD, and excessively large Ca2+ signals. Because the abnormal astrocytic Ca2+ signals observed in the above three disease models are dependent on type II inositol 1,4,5-trisphosphate receptors (IP3RII), we reanalyzed these pathological events using IP3RII-deficient mice and found that all abnormal Ca2+ signals and pathologies were markedly reduced. These findings indicate that abnormal Ca2+ signaling is not only a consequence but may also be greatly involved in the cause of these diseases. Abnormal Ca2+ signals in reactive astrocytes may represent an underlying pathology common to multiple diseases.


2021 ◽  
Author(s):  
Rebecca J. Rabinovich ◽  
Daniel D. Kato ◽  
Randy M Bruno

Primary sensory cortex has long been believed to play a straightforward role in the initial processing of sensory information. Yet, the superficial layers of cortex overall are sparsely active, even during sensory stimulation; moreover, cortical activity is influenced by other modalities, task context, reward, and behavioral state. Our study demonstrates that reinforcement learning dramatically alters representations among longitudinally imaged neurons in superficial layers of mouse primary somatosensory cortex. Learning an object detection task recruits previously unresponsive neurons, enlarging the neuronal population sensitive to touch and behavioral choice. In contrast, cortical responses decrease upon repeated exposure to unrewarded stimuli. Moreover, training improved population encoding of the passage of time, and unexpected deviations in trial timing elicited even stronger responses than touch did. In conclusion, the superficial layers of sensory cortex exhibit a high degree of learning-dependent plasticity and are strongly modulated by non-sensory but behaviorally-relevant features, such as timing and surprise.


2021 ◽  
Author(s):  
Ravi Pancholi ◽  
Lauren Ryan ◽  
Simon P Peron

Primary sensory cortex is a key locus of plasticity during learning. Exposure to novel stimuli often alters cortical activity, but isolating cortex-specific dynamics is challenging due to extensive pre-cortical processing. Here, we employ optical microstimulation of pyramidal neurons in layer (L) 2/3 of mouse primary vibrissal somatosensory cortex (vS1) to study cortical dynamics as mice learn to discriminate microstimulation intensity. Tracking activity over weeks using two-photon calcium imaging, we observe a rapid sparsification of the photoresponsive population, with the most responsive neurons exhibiting the largest declines in responsiveness. Following sparsification, the photoresponsive population attains a stable rate of neuronal turnover. At the same time, the photoresponsive population increasingly overlaps with populations encoding whisker movement and touch. Finally, we find that mice with larger declines in responsiveness learn the task more slowly than mice with smaller declines. Our results reveal that microstimulation-evoked cortical activity undergoes extensive reorganization during task learning and that the dynamics of this reorganization impact perception.


2021 ◽  
Author(s):  
Theofanis Karayannis ◽  
Linbi Cai ◽  
Jenq-Wei Yang ◽  
Shen-Ju Chou ◽  
Chia-Fang Wang ◽  
...  

The whiskers of rodents are a key sensory organ that provides critical tactile information for animal navigation and object exploration throughout life. Previous work has explored the developmental sensory-driven activation of the primary sensory cortex processing whisker information (wS1), also called barrel cortex. This body of work has shown that the barrel cortex is already activated by sensory stimuli during the first post-natal week. However, it is currently unknown when over the course of development these stimuli begin being processed by higher order cortical areas, such as secondary whisker somatosensory area (wS2). Here we investigate for the first time the developmental engagement of wS2 by sensory stimuli and the emergence of cortico-cortical communication from wS1 to wS2. Using in vivo wide-field imaging and electrophysiological recordings in control and conditional knock-out mice we find that wS1 and wS2 are able to process bottom-up information coming from the thalamus already right after birth. We identify that it is only at the end of the first post-natal week that wS1 begins to provide excitation into wS2, a connection which begins to acquire feed-forward inhibition characteristics after the second post-natal week. Therefore, we have uncovered a developmental window during which excitatory versus inhibitory functional connectivity between wS1 and wS2 takes place.


2021 ◽  
Author(s):  
Sebastian Reinartz ◽  
Arash Fassihi ◽  
Luciano Paz ◽  
Francesca Pulecchi ◽  
Marco Gigante ◽  
...  

Sensory experiences are accompanied by the perception of the passage of time; a cell phone vibration, for instance, is sensed as brief or long. The neuronal mechanisms underlying the perception of elapsed time remain unknown1. Recent work agrees on a role for cortical processing networks2,3, however the causal function of sensory cortex in time perception has not yet been specified. We hypothesize that the mechanisms for time perception are embedded within primary sensory cortex and are thus governed by the basic rules of sensory coding. By recording and optogenetically modulating neuronal activity in rat vibrissal somatosensory cortex, we find that the percept of stimulus duration is dilated and compressed by optogenetic excitation and inhibition, respectively, during stimulus delivery. A second set of rats judged the intensity of tactile stimuli; here, optogenetic excitation amplified the intensity percept, demonstrating sensory cortex to be the common gateway to both time and stimulus feature processing. The coding algorithms for sensory features are well established4–10. Guided by these algorithms, we formulated a 3–stage model beginning with the membrane currents evoked by vibrissal and optogenetic drive and culminating in the representation of perceived time; this model successfully replicated rats′ choices. Our finding that stimulus coding is intrinsic to sense of time disagrees with dedicated pacemaker-accumulator operation models11–13, where sensory input acts only to trigger the onset and offset of the timekeeping process. Time perception is thus as deeply intermeshed within the sensory processing pathway as is the sense of touch itself14,15 and can now be treated through the computational language of sensory coding. The model presented here readily generalizes to humans14,16 and opens up new approaches to understanding the time misperception at the core of numerous neurological conditions17,18.


2021 ◽  
Author(s):  
Karita E Ojala ◽  
Matthias Staib ◽  
Samuel Gerster ◽  
Christian C Ruff ◽  
Dominik R Bach

Sensory cortices are required for learning to discriminate complex stimuli that predict threat from those that predict safety in rodents. Yet, sensory cortices may not be needed to learn threat associations to simple stimuli. It is unknown whether these findings apply in humans. Here, we investigated the role of primary sensory cortex in discriminative threat conditioning with simple and complex somatosensory conditioned stimuli (CS) in healthy humans. Immediately before conditioning, participants received continuous theta-burst transcranial magnetic stimulation (cTBS) to primary somatosensory cortex either in the CS-contralateral or CS-ipsilateral hemisphere. After overnight consolidation, threat memory was attenuated in the contralateral compared to the ipsilateral group, as indicated by reduced startle eye-blink potentiation. There was no evidence for a difference between simple and complex stimuli, or that CS identification or conditioning was affected, suggesting a stronger effect of cTBS on consolidation than on initial stimulus processing. We propose that non-invasive stimulation of sensory cortex may provide a new avenue for interfering with threat memories in humans.


2021 ◽  
Author(s):  
Matteo Saponati ◽  
Jordi Garcia-Ojalvo ◽  
Enrico Cataldo ◽  
Alberto Mazzoni

AbstractThe thalamus is a key element of sensory transmission in the brain, as it gates and selects sensory streams through a modulation of its internal activity. A preponderant role in these functions is played by its internal activity in the alpha range ([8–14] Hz), but the mechanism underlying this process is not completely understood. In particular, how do thalamocortical connections convey stimulus driven information selectively over the back-ground of thalamic internally generated activity? Here we investigate this issue with a spiking network model of feedforward connectivity between thalamus and primary sensory cortex reproducing the local field potential of both areas. We found that in a feedforward network, thalamic oscillations in the alpha range do not entrain cortical activity for two reasons: (i) alpha range oscillations are weaker in neurons projecting to the cortex, (ii) the gamma resonance dynamics of cortical networks hampers oscillations over the 10–20 Hz range thus weakening alpha range oscillations. This latter mechanism depends on the balance of the strength of thalamocortical connections toward excitatory and inhibitory neurons in the cortex. Our results highlight the relevance of corticothalamic feedback to sustain alpha range oscillations and pave the way toward an integrated understanding of the sensory streams traveling between the periphery and the cortex.


2021 ◽  
Vol 15 ◽  
Author(s):  
Gabrielle Ewall ◽  
Samuel Parkins ◽  
Amy Lin ◽  
Yanis Jaoui ◽  
Hey-Kyoung Lee

Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11156
Author(s):  
Annika Reinersmann ◽  
Ian W. Skinner ◽  
Thomas Lücke ◽  
Nicola Massy-Westropp ◽  
Henrik Rudolf ◽  
...  

Complex Regional Pain Syndrome (CRPS) is characterised by pain, autonomic, sensory and motor abnormalities. It is associated with changes in the primary somatosensory cortex (S1 representation), reductions in tactile sensitivity (tested by two-point discrimination), and alterations in perceived hand size or shape (hand perception). The frequent co-occurrence of these three phenomena has led to the assumption that S1 changes underlie tactile sensitivity and perceptual disturbances. However, studies underpinning such a presumed relationship use tactile sensitivity paradigms that involve the processing of both non-spatial and spatial cues. Here, we used a task that evaluates anisotropy (i.e., orientation-dependency; a feature of peripheral and S1 representation) to interrogate spatial processing of tactile input in CRPS and its relation to hand perception. People with upper limb CRPS (n = 14) and controls with (n = 15) or without pain (n = 19) judged tactile distances between stimuli-pairs applied across and along the back of either hand to provide measures of tactile anisotropy. Hand perception was evaluated using a visual scaling task and questionnaires. Data were analysed with generalised estimating equations. Contrary to our hypotheses, tactile anisotropy was bilaterally preserved in CRPS, and the magnitude of anisotropic perception bias was comparable between groups. Hand perception was distorted in CRPS but not related to the magnitude of anisotropy or bias. Our results suggest against impairments in spatial processing of tactile input, and by implication S1 representation, as the cause of distorted hand perception in CRPS. Further work is warranted to elucidate the mechanisms of somatosensory dysfunction and distorted hand perception in CRPS.


Sign in / Sign up

Export Citation Format

Share Document