scholarly journals Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Damian M Herz ◽  
Huiling Tan ◽  
John-Stuart Brittain ◽  
Petra Fischer ◽  
Binith Cheeran ◽  
...  

Optimal decision-making requires balancing fast but error-prone and more accurate but slower decisions through adjustments of decision thresholds. Here, we demonstrate two distinct correlates of such speed-accuracy adjustments by recording subthalamic nucleus (STN) activity and electroencephalography in 11 Parkinson’s disease patients during a perceptual decision-making task; STN low-frequency oscillatory (LFO) activity (2–8 Hz), coupled to activity at prefrontal electrode Fz, and STN beta activity (13–30 Hz) coupled to electrodes C3/C4 close to motor cortex. These two correlates differed not only in their cortical topography and spectral characteristics but also in the relative timing of recruitment and in their precise relationship with decision thresholds. Increases of STN LFO power preceding the response predicted increased thresholds only after accuracy instructions, while cue-induced reductions of STN beta power decreased thresholds irrespective of instructions. These findings indicate that distinct neural mechanisms determine whether a decision will be made in haste or with caution.

2010 ◽  
Vol 22 (5) ◽  
pp. 1113-1148 ◽  
Author(s):  
Jiaxiang Zhang ◽  
Rafal Bogacz

Experimental data indicate that perceptual decision making involves integration of sensory evidence in certain cortical areas. Theoretical studies have proposed that the computation in neural decision circuits approximates statistically optimal decision procedures (e.g., sequential probability ratio test) that maximize the reward rate in sequential choice tasks. However, these previous studies assumed that the sensory evidence was represented by continuous values from gaussian distributions with the same variance across alternatives. In this article, we make a more realistic assumption that sensory evidence is represented in spike trains described by the Poisson processes, which naturally satisfy the mean-variance relationship observed in sensory neurons. We show that for such a representation, the neural circuits involving cortical integrators and basal ganglia can approximate the optimal decision procedures for two and multiple alternative choice tasks.


2019 ◽  
Author(s):  
Manuel R. Mercier ◽  
Celine Cappe

AbstractFacing perceptual uncertainty, the brain combines information from different senses to shape optimal decision making and to guide behavior. Despite overlapping neural networks underlying multisensory integration and perceptual decision making, the process chain of decision formation has been studied mostly in unimodal contexts and is thought to be supramodal. To reveal whether and how multisensory processing interplay with perceptual decision making, we devised a paradigm mimicking naturalistic situations where human participants were exposed to continuous cacophonous audiovisual inputs containing an unpredictable relevant signal cue in one or two modalities. Using multivariate pattern analysis on concurrently recorded EEG, we decoded the neural signatures of sensory encoding and decision formation stages. Generalization analyses across conditions and time revealed that multisensory signal cues were processed faster during both processing stages. We further established that acceleration of neural dynamics was directly linked to two distinct multisensory integration processes and associated with multisensory benefit. Our results, substantiated in both detection and categorization tasks, provide evidence that the brain integrates signals from different modalities at both the sensory encoding and the decision formation stages.


Stat ◽  
2021 ◽  
Author(s):  
Hengrui Cai ◽  
Rui Song ◽  
Wenbin Lu

Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guangsheng Zhang ◽  
Xiao Wang ◽  
Zhiqing Meng ◽  
Qirui Zhang ◽  
Kexin Wu

PurposeTo remedy the inherent defect in current research that focuses only on a single type of participants, this paper endeavors to look into the situation as an evolutionary game between a representative Logistics Service Integrator (LSI) and a representative Functional Logistics Service Provider (FLSP) in an environment with sudden crisis and tries to analyze how LSI supervises FLSP's operations and how FLSP responds in a recurrent pattern with different interruption probabilities.Design/methodology/approachRegarding the risks of supply chain interruption in emergencies, this paper develops a two-level model of single LSI and single FLSP, using Evolutionary Game theory to analyze their optimal decision-making, as well as their strategic behaviors on different risk levels regarding the interruption probability to achieve the optimal return with bounded rationality.FindingsThe results show that on a low-risk level, if LSI increases the degree of punishment, it will fail to enhance FLSP's operational activeness in the long term; when the risk rises to an intermediate level, a circular game occurs between LSI and FLSP; and on a high level of risk, FLSP will actively take actions, and its functional probability further impacts LSI's strategic choices. Finally, this paper analyzes the moderating impact of punishment intensity and social reputation loss on the evolutionary model in emergencies and provides relevant managerial implications.Originality/valueFirst, by taking both interruption probability and emergencies into consideration, this paper explores the interactions among the factors relevant to LSI's and FLSP's optimal decision-making. Second, this paper analyzes the optimal evolutionary game strategies of LSI and FLSP with different interruption probability and the range of their optimal strategies. Third, the findings of this paper provide valuable implications for relevant practices, such that the punishment intensity and social reputation loss determine the optimal strategies of LSI and FLSP, and thus it is an effective vehicle for LSSC system administrator to achieve the maximum efficiency of the system.


2021 ◽  
pp. 103418
Author(s):  
Xiangqian Zhu ◽  
Wenfeng Wang ◽  
Suhong Pang ◽  
Chaoyin An ◽  
Xiaoliang Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document