scholarly journals Author response: DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning

2020 ◽  
Author(s):  
Johannes Thomsen ◽  
Magnus Berg Sletfjerding ◽  
Simon Bo Jensen ◽  
Stefano Stella ◽  
Bijoya Paul ◽  
...  
Author(s):  
Johannes Thomsen ◽  
Magnus B. Sletfjerding ◽  
Stefano Stella ◽  
Bijoya Paul ◽  
Simon Bo Jensen ◽  
...  

AbstractSingle molecule Förster Resonance energy transfer (smFRET) is a mature and adaptable method for studying the structure of biomolecules and integrating their dynamics into structural biology. The development of high throughput methodologies and the growth of commercial instrumentation have outpaced the development of rapid, standardized, and fully automated methodologies to objectively analyze the wealth of produced data. Here we present DeepFRET, an automated standalone solution based on deep learning, where the only crucial human intervention in transiting from raw microscope images to histogram of biomolecule behavior, is a user-adjustable quality threshold. Integrating all standard features of smFRET analysis, DeepFRET will consequently output common kinetic information metrics for biomolecules. We validated the utility of DeepFRET by performing quantitative analysis on simulated, ground truth, data and real smFRET data. The accuracy of classification by DeepFRET outperformed human operators and current commonly used hard threshold and reached >95% precision accuracy only requiring a fraction of the time (<1% as compared to human operators) on ground truth data. Its flawless and rapid operation on real data demonstrates its wide applicability. This level of classification was achieved without any preprocessing or parameter setting by human operators, demonstrating DeepFRET’s capacity to objectively quantify biomolecular dynamics. The provided a standalone executable based on open source code capitalises on the widespread adaptation of machine learning and may contribute to the effort of benchmarking smFRET for structural biology insights.


2014 ◽  
Author(s):  
Yong Wang ◽  
Yanxin Liu ◽  
Hannah A DeBerg ◽  
Takeshi Nomura ◽  
Melinda Tonks Hoffman ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Johannes Thomsen ◽  
Magnus Berg Sletfjerding ◽  
Simon Bo Jensen ◽  
Stefano Stella ◽  
Bijoya Paul ◽  
...  

Single-molecule Förster Resonance energy transfer (smFRET) is an adaptable method for studying the structure and dynamics of biomolecules. The development of high throughput methodologies and the growth of commercial instrumentation have outpaced the development of rapid, standardized, and automated methodologies to objectively analyze the wealth of produced data. Here we present DeepFRET, an automated, open-source standalone solution based on deep learning, where the only crucial human intervention in transiting from raw microscope images to histograms of biomolecule behavior, is a user-adjustable quality threshold. Integrating standard features of smFRET analysis, DeepFRET consequently outputs the common kinetic information metrics. Its classification accuracy on ground truth data reached >95% outperforming human operators and commonly used threshold, only requiring ~1% of the time. Its precise and rapid operation on real data demonstrates DeepFRET’s capacity to objectively quantify biomolecular dynamics and the potential to contribute to benchmarking smFRET for dynamic structural biology.


2017 ◽  
Author(s):  
Fahad Rashid ◽  
Paul D Harris ◽  
Manal S Zaher ◽  
Mohamed A Sobhy ◽  
Luay I Joudeh ◽  
...  

Nano Letters ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1694-1701 ◽  
Author(s):  
Sung Hyun Kim ◽  
Hyunwoo Kim ◽  
Hawoong Jeong ◽  
Tae-Young Yoon

ACS Sensors ◽  
2021 ◽  
Author(s):  
Anoja Megalathan ◽  
Kalani M. Wijesinghe ◽  
Soma Dhakal

Sign in / Sign up

Export Citation Format

Share Document