scholarly journals Characterization and Effects of the pH on the Oxidation Potentials of Oxovanadium(IV)-Citrate Complex

1999 ◽  
Vol 64 (8) ◽  
pp. 1357-1368 ◽  
Author(s):  
Enric Brillas ◽  
José Carrasco ◽  
Ramon Oliver ◽  
Francesc Estrany ◽  
Víctor Ruiz

The electropolymerization of 2,5-di(2-(thienyl)pyrrole) (SNS) on a Pt electrode from ethanolic solution with LiClO4 or LiCl as electrolyte has been studied by cyclic voltammetry (CV) and chronoamperometry (CA). In both media, a quasi-reversible process has been indicated by CV, reversing the scan at low oxidation potentials. Under these conditions, reducible positive charges formed in both oxidized polymers are compensated by the entrance of anions from solution. Elemental analysis reveals that polymers generated at a low oxidation potential by CA contain a 21.03% (w/w) of ClO4- or a 9.56% (w/w) of Cl-. The poly(SNS) doped with Cl- presents higher proportion of reducible positive charges, higher polymerization charge and lower productivity. A much higher electrical conductivity, however, has been found for the poly(SNS) doped with ClO4-. Both polymers are soluble in DMSO, acetone and methanol. The dimer, trimer, tetramer and pentamer have been detected as soluble and neutral linear oligomers by mass spectrometry-fast atom bombardment. The analysis of polymers by infrared spectroscopy confirms the predominant formation of linear molecules with α-α linkages between monomeric units. A condensation mechanism involving one-electron oxidation of all electrogenerated linear and neutral polymeric chains is proposed to explain the SNS electropolymerization.


2001 ◽  
Vol 66 (1) ◽  
pp. 139-154 ◽  
Author(s):  
M. Fátima C. Guedes Da Silva ◽  
Luísa M. D. R. S. Martins ◽  
João J. R. Fraústo Da Silva ◽  
Armando J. L. Pombeiro

The organonitrile or carbonyl complexes cis-[ReCl(RCN)(dppe)2] (1) (R = 4-Et2NC6H4 (1a), 4-MeOC6H4 (1b), 4-MeC6H4 (1c), C6H5 (1d), 4-FC6H4 (1e), 4-ClC6H4 (1f), 4-O2NC6H4 (1g), 4-ClC6H4CH2 (1h), t-Bu (1i); dppe = Ph2PCH2CH2PPh2), or cis-[ReCl(CO)(dppe)2] (2), as well as trans-[FeBr(RCN)(depe)2]BF4 (3) (R = 4-MeOC6H4 (3a), 4-MeC6H4 (3b), C6H5 (3c), 4-FC6H4 (3d), 4-O2NC6H4 (3e), Me (3f), Et (3g), 4-MeOC6H4CH2 (3h); depe = Et2PCH2CH2PEt2), novel trans-[FeBr(CO)(depe)2]BF4 (4) and trans-[FeBr2(depe)2] (5) undergo, as revealed by cyclic voltammetry at a Pt-electrode and in aprotic non-aqueous medium, two consecutive reversible or partly reversible one-electron oxidations assigned as ReI → ReII → ReIII or FeII → FeIII → FeIV. The corresponding values of the oxidation potentials IE1/2ox and IIE1/2ox (waves I and II, respectively) correlate with the Pickett's and Lever's electrochemical ligand and metal site parameters. This allows to estimate these parameters for the various nitrile ligands, depe and binding sites (for the first time for a FeIII/IV couple). The electrochemical ligand parameter show dependence on the "electron-richness" of the metal centre. The values of IE1/2ox for the ReI complexes provide some supporting for a curved overall relationship with the sum of Lever's electrochemical ligand parameter. The Pickett parametrization for closed-shell complexes is extended now also to 17-electron complexes, i.e. with the 15-electron ReII and FeIII centres in cis-{[ReCl(dppe)2]}+ and trans-{FeBr(depe)2}2+, respectively.


2021 ◽  
Author(s):  
Hui Zhang ◽  
Eeva‐Stiina Tuittila ◽  
Aino Korrensalo ◽  
Anna M. Laine ◽  
Salli Uljas ◽  
...  

2001 ◽  
Vol 40 (23) ◽  
pp. 5772-5779 ◽  
Author(s):  
M. Tsaramyrsi ◽  
M. Kaliva ◽  
A. Salifoglou ◽  
C. P. Raptopoulou ◽  
A. Terzis ◽  
...  

2018 ◽  
Vol 71 (4) ◽  
pp. 249 ◽  
Author(s):  
A. D. Dinga Wonanke ◽  
Deborah L. Crittenden

The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high scientific interest and technological importance, including molecular wires, semiconducting polymers, and nanographenes. While simple electrocyclization reactions obey the Woodward-Hoffman rules, no such simple, general, and powerful model is available for eliminative cyclization reactions due to their increased mechanistic complexity. In this work, detailed mechanistic investigations of prototypical reactions reveal that there is no single rate-determining step for thermal oxidative dehydrogenation reactions, but they are very sensitive to the presence and distribution of heteroatoms around the photocyclizing ring system. Key aspects of reactivity are correlated to the constituent ring oxidation potentials. For photocyclization reactions, planarization occurs readily and/or spontaneously following photo-excitation, and is promoted by heteroatoms within 5-membered ring adjacent to the photocyclizing site. Oxidative photocyclization requires intersystem crossing to proceed to products, while reactants configured to undergo purely eliminative photocyclization could proceed to products entirely in the excited state. Overall, oxidative photocyclization seems to strike the optimal balance between synthetic convenience (ease of preparation of reactants, mild conditions, tolerant to chemical diversity in reactants) and favourable kinetic and thermodynamic properties.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Yun Zhang ◽  
Xiaojing Li ◽  
Jia Li ◽  
Md. Zaved Hossain Khan ◽  
Fanyi Ma ◽  
...  

Abstract Background In order to enhance the antibacterial activity and reduce the toxicity of Zn2+, novel complexes of Zn(II) were synthesized. Results A water-soluble zinc-glucose-citrate complex (ZnGC) with antibacterial activity was synthesized at pH 6.5. The structure, morphology, characterization, acute toxicity, antibacterial and antioxidant activities, and in situ intestinal absorption were investigated. The results showed that zinc ion was linked with citrate by coordinate bond while the glucose was linked with it through intermolecular hydrogen bonding. The higher the molecular weight of sugar is, the more favorable it is to inhibit the formation of zinc citrate precipitation. Compared with ZnCl2, ZnGC complex presented better antibacterial activity against Staphylococcus aureus (S. aureus, Gram-positive) and Escherichia coli (E. coli, Gram-negative). Conclusions The results of acute toxicity showed no obvious toxicity in this test and in situ intestinal absorption study, suggesting that ZnGC complex could be used as a potential zinc supplement for zinc deficiency.


Sign in / Sign up

Export Citation Format

Share Document