scholarly journals 6 Molecular typing of sand fly species by PCR-RFLP of 18S rRNA gene(Proceedings of the 63rd Annual Meeting of Western Region)

2009 ◽  
Vol 60 (2) ◽  
pp. 157
Author(s):  
H. Kato ◽  
Y. Terayama ◽  
A. Gomez Eduardo ◽  
H. Uezato ◽  
Calvopina Manuel ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Jasem Saki ◽  
Masoud Foroutan-Rad ◽  
Reza Asadpouri

Background. Rodents could act as reservoir forCryptosporidiumspp. speciallyC. parvum, a zoonotic agent responsible for human infections. Since there is no information aboutCryptosporidiuminfection in rodents of Ahvaz city, southwest of Iran, hence, this survey was performed to determine the prevalence and molecular characterization ofCryptosporidiumspp. in this region.Materials and Methods. One hundred rodents were trapped from different regions of Ahvaz city. Intestine contents and fecal specimens of rodents were studied using both microscopy examination to identify oocyst and nested-polymerase chain reaction (PCR) technique for 18s rRNA gene detection. Eventually restriction fragment length polymorphism (RFLP) method usingSspIandVspIrestriction enzymes was carried out to genotype the species and then obtained results were sequenced.Results. Three out of 100 samples were diagnosed as positive and overall prevalence ofCryptosporidiumspp. was 3% using both modified Ziehl-Neelsen staining under light microscope and nested-PCR (830 bp) methods. Afterwards, PCR-RFLP was performed on positive samples andC. parvumpattern was identified. Finally PCR-RFLP findings were sequenced and presence ofC. parvumwas confirmed again.Conclusions. Our study showed rodents could be potential reservoir forC. parvum. So an integrated program for control and combat with them should be adopted and continued.


Acta Tropica ◽  
2020 ◽  
Vol 211 ◽  
pp. 105609 ◽  
Author(s):  
María Cristina Almazán ◽  
Griselda Noemí Copa ◽  
Juan José Lauthier ◽  
José Fernando Gil ◽  
Inés López Quiroga ◽  
...  

2007 ◽  
Vol 41 (5) ◽  
pp. 851-856 ◽  
Author(s):  
M. Azami ◽  
D. D. Moghaddam ◽  
R. Salehi ◽  
M. Salehi

2008 ◽  
Vol 12 ◽  
pp. e380-e381
Author(s):  
D. Dorostkar Moghaddam ◽  
M. Azami ◽  
R. Salehi ◽  
M. Salehi

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Claire Y. T. Wang ◽  
Emma L. Ballard ◽  
Zuleima Pava ◽  
Louise Marquart ◽  
Jane Gaydon ◽  
...  

Abstract Background Volunteer infection studies have become a standard model for evaluating drug efficacy against Plasmodium infections. Molecular techniques such as qPCR are used in these studies due to their ability to provide robust and accurate estimates of parasitaemia at increased sensitivity compared to microscopy. The validity and reliability of assays need to be ensured when used to evaluate the efficacy of candidate drugs in clinical trials. Methods A previously described 18S rRNA gene qPCR assay for quantifying Plasmodium falciparum in blood samples was evaluated. Assay performance characteristics including analytical sensitivity, reportable range, precision, accuracy and specificity were assessed using experimental data and data compiled from phase 1 volunteer infection studies conducted between 2013 and 2019. Guidelines for validation of laboratory-developed molecular assays were followed. Results The reportable range was 1.50 to 6.50 log10 parasites/mL with a limit of detection of 2.045 log10 parasites/mL of whole blood based on a parasite diluted standard series over this range. The assay was highly reproducible with minimal intra-assay (SD = 0.456 quantification cycle (Cq) units [0.137 log10 parasites/mL] over 21 replicates) and inter-assay (SD = 0.604 Cq units [0.182 log10 parasites/mL] over 786 qPCR runs) variability. Through an external quality assurance program, the QIMR assay was shown to generate accurate results (quantitative bias + 0.019 log10 parasites/mL against nominal values). Specificity was 100% after assessing 164 parasite-free human blood samples. Conclusions The 18S rRNA gene qPCR assay is specific and highly reproducible and can provide reliable and accurate parasite quantification. The assay is considered fit for use in evaluating drug efficacy in malaria clinical trials.


Sign in / Sign up

Export Citation Format

Share Document