drug efficacy
Recently Published Documents


TOTAL DOCUMENTS

1737
(FIVE YEARS 651)

H-INDEX

65
(FIVE YEARS 10)

2022 ◽  
Vol 8 (4) ◽  
pp. 238-242
Author(s):  
Shoheb S Shaikh ◽  
Sachin M Kokate

Daily rhythmic variations in biological functions affect the efficacy and/or toxicity of drugs: a large number of drugs cannot be expected to exhibit the same potency at different administration times. The “circadian clock” is an endogenous timing system that broadly regulates metabolism, physiology and behavior. In mammals, this clock governs the oscillatory expression of the majority of genes with a period length of approximately 24 h. Genetic studies have revealed that molecular components of the circadian clock regulate the expression of genes responsible for the sensitivity to drugs and their disposition. The circadian control of pharmacodynamics and pharmacokinetics enables ‘chrono-pharmaceutical’ applications, namely drug administration at appropriate times of day to optimize the therapeutic index (efficacy vs. toxicity). On the other hand, a variety of pathological conditions also exhibit marked day-night changes in symptom intensity. Currently, novel therapeutic approaches are facilitated by the development of chemical compound targeted to key proteins that cause circadian exacerbation of disease events. This review presents an overview of the current understanding of the role of the circadian biological clock in regulating drug efficacy and disease conditions, and also describes the importance of identifying the difference in the circadian machinery between diurnal and nocturnal animals to select the most appropriate times of day to administer drugs in humans.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 160
Author(s):  
María Celsa Peña-Martín ◽  
Belén García-Berrocal ◽  
Almudena Sánchez-Martín ◽  
Elena Marcos-Vadillo ◽  
María Jesús García-Salgado ◽  
...  

Precision medicine utilizing the genetic information of genes involved in the metabolism and disposition of drugs can not only improve drug efficacy but also prevent or minimize adverse events. Polypharmacy is common among multimorbid patients and is associated with increased adverse events. One of the main objectives in health care is safe and efficacious drug therapy, which is directly correlated to the individual response to treatment. Precision medicine can increase drug safety in many scenarios, including polypharmacy. In this report, we share our experience utilizing precision medicine over the past ten years. Based on our experience using pharmacogenetic (PGx)-informed prescribing, we implemented a five-step precision medicine protocol (5SPM) that includes the assessment of the biological–clinical characteristics of the patient, current and past prescription history, and the patient’s PGx test results. To illustrate our approach, we present cases highlighting the clinical relevance of precision medicine with a focus on patients with a complex history and polypharmacy.


Author(s):  
Minu Nain ◽  
Mradul Mohan ◽  
Amit Sharma

Malaria is a major cause of death in low-income countries. Malaria relapses are caused by Plasmodium vivax–induced latent liver stage hypnozoites, and relapses contribute significantly to the total disease burden. The goal of malaria elimination is threatened in countries where P. vivax is endemic and relapses remain a key aspect of concern. Targeting of the hypnozoites is crucial for radical cure and this is achieved by primaquine (PQ). In addition to its anti-hypnozoite effects, PQ also possesses gametocidal activity against all malaria causing Plasmodium species and is hence a useful tool to curtail malaria transmission. It is well known that host glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with hemolysis after treatment with PQ. Multiple other host polymorphisms impact on PQ metabolism, potentially affecting drug efficacy. Being a prodrug, PQ requires host factors cytochrome P450 2D6 (CYP2D6), cytochrome P450 NADPH: oxidoreductase (CPR) and monoamine oxidase (MAO) for its metabolism and conversion to active form. The efficacy of PQ in the host is therefore dependent on genetic polymorphisms of these three host genes. The efficacy of PQ is important for clearing reservoirs of P. vivax infection. Here, we have analyzed the known spectrum of genetic polymorphisms for host genes that enable PQ metabolism. It is vital to delineate the polymorphisms that determine the ultimate efficacy of PQ for formulating better malaria elimination strategies in countries with severe malaria burden. Thus population-based studies of these gene variants will provide new insights into the role of host genetics on PQ treatment outcomes.


Author(s):  
Shilpaa Mukundan ◽  
Jordan Bell ◽  
Matthew Teryek ◽  
Charles Hernandez ◽  
Andrea C. Love ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 591
Author(s):  
Da-Gyum Lee ◽  
Hye-Jung Kim ◽  
Youngsun Lee ◽  
Jung-Hyun Kim ◽  
Yoohyun Hwang ◽  
...  

Mycobacterium abscessus (M. abscessus) causes chronic pulmonary infections. Its resistance to current antimicrobial drugs makes it the most difficult non-tuberculous mycobacteria (NTM) to treat with a treatment success rate of 45.6%. Therefore, there is a need for new therapeutic agents against M. abscessus. We identified 10-DEBC hydrochloride (10-DEBC), a selective AKT inhibitor that exhibits inhibitory activity against M. abscessus. To evaluate the potential of 10-DEBC as a treatment for lung disease caused by M. abscessus, we measured its effectiveness in vitro. We established the intracellular activity of 10-DEBC against M. abscessus in human macrophages and human embryonic cell-derived macrophages (iMACs). 10-DEBC significantly inhibited the growth of wild-type M. abscessus and clinical isolates and clarithromycin (CLR)-resistant M. abscessus strains. 10-DEBC’s drug efficacy did not have cytotoxicity in the infected macrophages. In addition, 10-DEBC operates under anaerobic conditions without replication as well as in the presence of biofilms. The alternative caseum binding assay is a unique tool for evaluating drug efficacy against slow and nonreplicating bacilli in their native caseum media. In the surrogate caseum, the mean undiluted fraction unbound (fu) for 10-DEBC is 5.696. The results of an in vitro study on the activity of M. abscessus suggest that 10-DEBC is a potential new drug for treating M. abscessus infections.


Author(s):  
Marcellus Simadibrata ◽  
Aditya Rachman ◽  
Saskia Aziza Nursyirwan ◽  
Murdani Abdullah ◽  
Rabbinu Rangga Pribadi ◽  
...  

Ulcerative colitis (UC) is an idiopathic inflammatory disease that affects the colon. Current pharmacological modalities to treat UC have various side effects; therefore, there is a demand to develop a new alternative medicine that can reduce side effects and increase drug efficacy. One candidate for alternative therapy is Polysaccharide Peptide which is extracted from Ganoderma lucidum mycelium. This Polysaccaharide has an active compound of Β-1,3/1,6-D-Glucan which has strong immunomodulatory and anti-inflammatory properties. Various studies have reported that Ganoderma lucidum polysaccharides can reduce inflammatory markers such as TNF-α, IFN-γ, and IL-17A, which is produced by colonic mucosal inflammation. In addition, β-1,3/1,6-D-Glucan has shown improvements in inflammatory parameters and intestinal immunological barrier function animal studies with artificial colitis and requires further research in humans before clinical applications. 


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Wahib M. Atroosh ◽  
Yee-Ling Lau ◽  
Georges Snounou ◽  
Meram Azzani ◽  
Hesham M. Al-Mekhlafi

Abstract Background Genotyping of the three Plasmodium falciparum polymorphic genes, msp1, msp2 and glurp, has been adopted as a standard strategy to distinguish recrudescence from new infection in drug efficacy clinical trials. However, the suitability of a particular gene is compromised in areas where its allelic variants distribution is significantly skewed, a phenomenon that might occur in isolated parasite populations or in areas of very low transmission. Moreover, observation of amplification bias has diminished the value of glurp as a marker. Methods The suitability of the polymorphic P. falciparum histidine-rich protein 2 (pfhrp2) gene was assessed to serve as an alternative marker using a PCR-sequencing or a PCR–RFLP protocol for genotyping of samples in drug efficacy clinical trials. The value of pfhrp2 was validated by side-by-side analyses of 5 admission-recrudescence sample pairs from Yemeni malaria patients. Results The outcome of the single pfhrp2 gene discrimination analysis has been found consistent with msp1, msp2 and glurp pool genotyping analysis for the differentiation of recrudescence from new infection. Conclusion The findings suggest that under the appropriate circumstances, pfhrp2 can serve as an additional molecular marker for monitoring anti-malarials efficacy. However, its use is restricted to endemic areas where only a minority of P. falciparum parasites lack the pfhrp2 gene.


2022 ◽  
Author(s):  
Martina Mambrini ◽  
Laura Mecozzi ◽  
Erica Ferrini ◽  
Ludovica Leo ◽  
Davide Bernardi ◽  
...  

Abstract Micro-Computed Tomography (CT) imaging provides densitometric and functional assessment of lung diseases in animal models, playing a key role either in understanding disease progression or in drug discovery studies.The generation of reliable and reproducible experimental data is strictly dependent on a system’s stability. Quality Controls (QC) are essential to monitor micro-CT performance but, although QC procedures are standardized and routinely employed in clinical practice, detailed guidelines for preclinical imaging are lacking. In this work, we propose a routine QC protocol for in vivo micro-CT, based on three commercial phantoms. To investigate the impact of a detected scanner drift on image post-processing, a retrospective analysis using twenty-two healthy mice was performed and lung density histograms used to compare the Area Under Curve (AUC), the skewness and the kurtosis before and after the drift. As expected, statistically significant differences were found for all the selected parameters [AUC: 532 ± 31 vs. 420 ± 38 (p < 0.001); skewness: 2.3 ± 0.1 vs. 2.5 ± 0.1 (p < 0.001) and kurtosis: 4.2 ± 0.3 vs. 5.1 ± 0.5 (p < 0.001)], confirming the importance of the designed QC procedure to obtain a reliable longitudinal quantification of disease progression and drug efficacy evaluation.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 163
Author(s):  
Cheng-Bang Jian ◽  
Xu-En Yu ◽  
Hua-De Gao ◽  
Huai-An Chen ◽  
Ren-Hua Jheng ◽  
...  

Prolyl hydroxylase domain-containing protein 2 (PHD2) inhibition, which stabilizes hypoxia-inducible factor (HIF)-1α and thus triggers adaptation responses to hypoxia in cells, has become an important therapeutic target. Despite the proven high potency, small-molecule PHD2 inhibitors such as IOX2 may require a nanoformulation for favorable biodistribution to reduce off-target toxicity. A liposome formulation for improving the pharmacokinetics of an encapsulated drug while allowing a targeted delivery is a viable option. This study aimed to develop an efficient loading method that can encapsulate IOX2 and other PHD2 inhibitors with similar pharmacophore features in nanosized liposomes. Driven by a transmembrane calcium acetate gradient, a nearly 100% remote loading efficiency of IOX2 into liposomes was achieved with an optimized extraliposomal solution. The electron microscopy imaging revealed that IOX2 formed nanoprecipitates inside the liposome’s interior compartments after loading. For drug efficacy, liposomal IOX2 outperformed the free drug in inducing the HIF-1α levels in cell experiments, especially when using a targeting ligand. This method also enabled two clinically used inhibitors—vadadustat and roxadustat—to be loaded into liposomes with a high encapsulation efficiency, indicating its generality to load other heterocyclic glycinamide PHD2 inhibitors. We believe that the liposome formulation of PHD2 inhibitors, particularly in conjunction with active targeting, would have therapeutic potential for treating more specifically localized disease lesions.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 190
Author(s):  
Mélanie A. G. Barbosa ◽  
Cristina P. R. Xavier ◽  
Rúben F. Pereira ◽  
Vilma Petrikaitė ◽  
M. Helena Vasconcelos

Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union’s regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.


Sign in / Sign up

Export Citation Format

Share Document