scholarly journals Delay minimization based uplink resource allocation for device-to-device communications considering mmWave propagation

2021 ◽  
Vol 7 ◽  
pp. e462
Author(s):  
Marcus V.G. Ferreira ◽  
Flávio Henrique Teles Vieira

This paper addresses the resource allocation problem in multi-sharing uplink for device-to-device (D2D) communication, one aspect of 5G communication networks. The main advantage and motivation in relation to the use of D2D communication is the significant improvement in the spectral efficiency of the system when exploiting the proximity of communication pairs and reusing idle resources of the network, mainly in the uplink mode, where there are more idle available resources. An approach is proposed for allocating resources to D2D and cellular user equipments (CUE) users in the uplink of a 5G based network which considers the estimation of delay bound value. The proposed algorithm considers minimization of total delay for users in the uplink and solves the problem by forming conflict graph and by finding the maximal weight independent set. For the user delay estimation, an approach is proposed that considers the multifractal traffic envelope process and service curve for the uplink. The performance of the algorithm is evaluated through computer simulations in comparison with those of other algorithms in the literature in terms of throughput, delay, fairness and computational complexity in a scenario with channel modeling that describes the propagation of millimeter waves at frequencies above 6 GHz. Simulation results show that the proposed allocation algorithm outperforms other algorithms in the literature, being highly efficient to 5G systems.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yinuo He ◽  
Feiran Wang ◽  
Jianjun Wu

Device-to-device (D2D) communications and femtocell systems can bring significant benefits to users’ throughput. However, the complicated three-tier interference among macrocell, femtocell, and D2D systems is a challenging issue in heterogeneous networks. As D2D user equipment (UE) can cause interference to cellular UE, scheduling and allocation of channel resources and power of D2D communication need elaborate coordination. In this paper, we propose a joint scheduling and resource allocation scheme to improve the performance of D2D communication. We take UE rate and UE fairness into account by performing interference management. First, we construct a Stackelberg game framework in which we group a macrocellular UE, a femtocellular UE, and a D2D UE to form a two-leader one-follower pair. The cellular UE are leaders, and D2D UE is the follower who buys channel resources from the leaders. We analyze the equilibrium of the game and obtain solutions to the equilibrium. Second, we propose an algorithm for joint scheduling of D2D pairs based on their utility. Finally, we perform computer simulations to study the performance of the proposed scheme.


2019 ◽  
Vol 13 (2) ◽  
pp. 1273-1284 ◽  
Author(s):  
Shengjie Guo ◽  
Xiangwei Zhou ◽  
Sa Xiao ◽  
Mingxuan Sun

2018 ◽  
Vol 26 (3) ◽  
pp. 1653-1666
Author(s):  
Rong Chai ◽  
Ling Wang ◽  
Hong Chen ◽  
Qianbin Chen

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 48060-48073
Author(s):  
Saeed Ullah ◽  
Kitae Kim ◽  
Aunas Manzoor ◽  
Latif U. Khan ◽  
S. M. Ahsan Kazmi ◽  
...  

Author(s):  
Fareha Nizam ◽  
Mardeni Roslee ◽  
Zubaida Yusoff ◽  
Prince Ugochukwu Nmenme ◽  
Keshvinder Singh ◽  
...  

<p>A vital technology in the next-generation cellular network is device-to-device (D2D) communication. Cellular user enabled with D2D communication provides high spectral efficiency and further increases the coverage area of the cell, especially for the end-cell users and blind spot areas. However, the implementation of D2D communication increases interference among the cellular and D2D users. In this paper, we proposed a radio resource allocation (RRA) algorithm to manage the interference using fractional frequency reuse (FFR) scheme and Hungarian algorithm. The proposed algorithm is divided into three parts. First, the FFR scheme allocates different frequency bands among the cell (inner and outer region) for both the cellular and the D2D users to reduce the interference. Second, the Hungarian weighted bipartite matching algorithm is used to allocate the resources to D2D users with the minimum total system interference, while maintaining the total system sum rate. The cellular users share the resources with more than one D2D pair. Lastly, the local search technique of swapping is used for further allocation to minimize the interference. We implemented two types of assignments, fair multiple assignment, and restricted multiple assignment. We compared our results with existing algorithms which verified that our proposed algorithm provides outstanding results in aspects like interference reduction and system sum rate. For restricted multiple assignment, 60-70% of the D2D users are allocated in average cases.</p>


Device to Device (D2D) communication in cellular networks is defined as direct communication between two mobile users without traversing the data through the base station (BS). Indoor D2D communication refers to transmission between two users within a building or in a closed space. Resource allocation is a plan for using available resources efficiently and the resources are allocated for optimal functioning of the D2D network. The algorithms for optimizing D2D network is characterized by the parameters like matching network, noise, throughput maximization and few more. In this work, our aim is to develop resource allocation algorithms for indoor D2D communication. An efficient resource allocation algorithm for device to device communication and a suitable frequency allocation technique in order to avoid call blockage should be designed. The main challenge in this work is to allocate resources to D2D users without affecting cellular users efficiency. These optimal resource allocation works efficiently and also adapt to time and location variation. The process involved in each algorithm is elaborated.


Sign in / Sign up

Export Citation Format

Share Document