scholarly journals On the embryonic cell division beyond the contractile ring mechanism: experimental and computational investigation of effects of vitelline confinement, temperature and egg size

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1490 ◽  
Author(s):  
Evgeny Gladilin ◽  
Roland Eils ◽  
Leonid Peshkin

Embryonic cell division is a mechanical process which is predominantly driven by contraction of the cleavage furrow and response of the remaining cellular matter. While most previous studies focused on contractile ring mechanisms of cytokinesis, effects of environmental factors such as pericellular vitelline membrane and temperature on the mechanics of dividing cells were rarely studied. Here, we apply a model-based analysis to the time-lapse imaging data of two species (Saccoglossus kowalevskiiandXenopus laevis) with relatively large eggs, with the goal of revealing the effects of temperature and vitelline envelope on the mechanics of the first embryonic cell division. We constructed a numerical model of cytokinesis to estimate the effects of vitelline confinement on cellular deformation and to predict deformation of cellular contours. We used the deviations of our computational predictions from experimentally observed cell elongation to adjust variable parameters of the contractile ring model and to quantify the contribution of other factors (constitutive cell properties, spindle polarization) that may influence the mechanics and shape of dividing cells. We find that temperature affects the size and rate of dilatation of the vitelline membrane surrounding fertilized eggs and show that in native (not artificially devitellinized) egg cells the effects of temperature and vitelline envelope on mechanics of cell division are tightly interlinked. In particular, our results support the view that vitelline membrane fulfills an important role of micromechanical environment around the early embryo the absence or improper function of which under moderately elevated temperature impairs normal development. Furthermore, our findings suggest the existence of scale-dependent mechanisms that contribute to cytokinesis in species with different egg size, and challenge the view of mechanics of embryonic cell division as a scale-independent phenomenon.

1987 ◽  
Vol 105 (6) ◽  
pp. 2811-2816 ◽  
Author(s):  
Y L Wang

Filamentous actin in living cultured cells was labeled by microinjecting trace amounts of rhodamine-phalloidin (rh-pha) as a specific, high-affinity probe. The microinjection caused no detectable effect on cell morphology or cell division. The distribution of rh-pha-labeled filaments was then examined in dividing cells using image-intensified fluorescence microscopy, and the exchangeability of labeled filaments along stress fibers was studied during interphase using fluorescence recovery after photobleaching. rh-pha showed a rapid concentration at the contractile ring during cell division. In addition, recovery of fluorescence after photobleaching occurred along stress fibers with a halftime as short as 8 min. These observations suggest that at least some actin filaments undergo continuous movement and reorganization in living cells. This dynamic process may play an important role in various cellular functions.


2019 ◽  
Author(s):  
Lokesh Pimpale ◽  
Teije C. Middelkoop ◽  
Alexander Mietke ◽  
Stephan W. Grill

ABSTRACTProper positioning of cells is important for many aspects of embryonic development, tissue homeostasis, and regeneration. A simple mechanism by which cell positions can be specified is via orienting the cell division axis. This axis is specified at the onset of cytokinesis, but can be reoriented as cytokinesis proceeds. Rotatory actomyosin flows have been implied in specifying and reorienting the cell division axis in certain cases, but how general such reorientation events are, and how they are controlled, remains unclear. In this study, we set out to address these questions by investigating early Caenorhabditis elegans development. In particular, we determined which of the early embryonic cell divisions exhibit chiral counter-rotating actomyosin flows, and which do not. We follow the first nine divisions of the early embryo, and discover that chiral counter-rotating flows arise systematically in the early AB lineage, but not in early P/EMS lineage cell divisions. Combining our experiments with thin film active chiral fluid theory we identify specific properties of the actomyosin cortex in the symmetric AB lineage divisions that favor chiral counter-rotating actomyosin flows of the two halves of the dividing cell. Finally, we show that these counter-rotations are the driving force of both the AB lineage spindle skew and cell reorientation events. In conclusion, we here have shed light on the physical basis of lineage-specific actomyosin-based processes that drive chiral morphogenesis during development.


Sign in / Sign up

Export Citation Format

Share Document