scholarly journals Study of α*-Homeomorphisms by α*-closed Sets

2019 ◽  
pp. 1-6
Author(s):  
K. Vithyasangaran ◽  
P. Elango

In this paper, we introduce a new kind of closed sets called α* -closed sets in a topological space and investigate their properties. These closed sets are compared with the closed sets and the generalized closed sets. We also introduce the α* -homeomorphisms and develop their properties by using the α* -closed maps and α* -continuous maps.

Author(s):  
Vijayakumari T Et.al

In this paper pgrw-locally closed set, pgrw-locally closed*-set and pgrw-locally closed**-set are introduced. A subset A of a topological space (X,t) is called pgrw-locally closed (pgrw-lc) if A=GÇF where G is a pgrw-open set and F is a pgrw-closed set in (X,t). A subset A of a topological space (X,t) is a pgrw-lc* set if there exist a pgrw-open set G and a closed set F in X such that A= GÇF. A subset A of a topological space (X,t) is a pgrw-lc**-set if there exists an open set G and a pgrw-closed set F such that A=GÇF. The results regarding pgrw-locally closed sets, pgrw-locally closed* sets, pgrw-locally closed** sets, pgrw-lc-continuous maps and pgrw-lc-irresolute maps and some of the properties of these sets and their relation with other lc-sets are established.


Author(s):  
J. M. U. D. Wijerathne ◽  
P. Elango

In this paper, we introduce a new kind of locally closed sets called regular locally closed sets (brie y RL-closed sets) in a topological space which are weaker than the locally closed sets. Regular locally continuous maps and regular locally irresolute maps are also introduced and studied some of their properties. Finally, we introduce the concept of regular locally connectedness and regular locally compactness on a topological space using the RL-closed sets.


2020 ◽  
Vol 9 (11) ◽  
pp. 9353-9360
Author(s):  
G. Selvi ◽  
I. Rajasekaran

This paper deals with the concepts of semi generalized closed sets in strong generalized topological spaces such as $sg^{\star \star}_\mu$-closed set, $sg^{\star \star}_\mu$-open set, $g^{\star \star}_\mu$-closed set, $g^{\star \star}_\mu$-open set and studied some of its basic properties included with $sg^{\star \star}_\mu$-continuous maps, $sg^{\star \star}_\mu$-irresolute maps and $T_\frac{1}{2}$-space in strong generalized topological spaces.


Author(s):  
B. J. Day ◽  
G. M. Kelly

We are concerned with the category of topological spaces and continuous maps. A surjection f: X → Y in this category is called a quotient map if G is open in Y whenever f−1G is open in X. Our purpose is to answer the following three questions:Question 1. For which continuous surjections f: X → Y is every pullback of f a quotient map?Question 2. For which continuous surjections f: X → Y is f × lz: X × Z → Y × Z a quotient map for every topological space Z? (These include all those f answering to Question 1, since f × lz is the pullback of f by the projection map Y ×Z → Y.)Question 3. For which topological spaces Z is f × 1Z: X × Z → Y × Z a qiptoent map for every quotient map f?


Author(s):  
Othman Echi

Let [Formula: see text] be a topological space. By the Skula topology (or the [Formula: see text]-topology) on [Formula: see text], we mean the topology [Formula: see text] on [Formula: see text] with basis the collection of all [Formula: see text]-locally closed sets of [Formula: see text], the resulting space [Formula: see text] will be denoted by [Formula: see text]. We show that the following results hold: (1) [Formula: see text] is an Alexandroff space if and only if the [Formula: see text]-reflection [Formula: see text] of [Formula: see text] is a [Formula: see text]-space. (2) [Formula: see text] is a Noetherian space if and only if [Formula: see text] is finite. (3) If we denote by [Formula: see text] the Alexandroff extension of [Formula: see text], then [Formula: see text] if and only if [Formula: see text] is a Noetherian quasisober space. We also give an alternative proof of a result due to Simmons concerning the iterated Skula spaces, namely, [Formula: see text]. A space is said to be clopen if its open sets are also closed. In [R. E. Hoffmann, Irreducible filters and sober spaces, Manuscripta Math. 22 (1977) 365–380], Hoffmann introduced a refinement clopen topology [Formula: see text] of [Formula: see text]: The indiscrete components of [Formula: see text] are of the form [Formula: see text], where [Formula: see text] and [Formula: see text] is the intersection of all open sets of [Formula: see text] containing [Formula: see text] (equivalently, [Formula: see text]). We show that [Formula: see text]


2021 ◽  
Vol 13 (2) ◽  
pp. 483-493
Author(s):  
Ritu Sen

Abstract In this paper our main interest is to introduce a new type of generalized open sets defined in terms of an operation on a generalized topological space. We have studied some properties of this newly defined sets. As an application, we have introduced some weak separation axioms and discussed some of their properties. Finally, we have studied some preservation theorems in terms of some irresolute functions.


1989 ◽  
Vol 41 (6) ◽  
pp. 1021-1089 ◽  
Author(s):  
N. Christopher Phillips

In topology, the representable K-theory of a topological space X is defined by the formulas RK0(X) = [X,Z x BU] and RKl(X) = [X, U], where square brackets denote sets of homotopy classes of continuous maps, is the infinite unitary group, and BU is a classifying space for U. (Note that ZxBU is homotopy equivalent to the space of Fredholm operators on a separable infinite-dimensional Hilbert space.) These sets of homotopy classes are made into abelian groups by using the H-group structures on Z x BU and U. In this paper, we give analogous formulas for the representable K-theory for α-C*-algebras defined in [20].


2015 ◽  
Vol 08 (03) ◽  
pp. 1550059
Author(s):  
S. A. Abd-El Baki ◽  
O. R. Sayed

In this paper, the concepts of [Formula: see text]-closed and [Formula: see text]-continuous maps are introduced and several properties of them are investigated. These concepts are used to obtain several results concerning the preservation of [Formula: see text]-closed sets. Moreover, we use [Formula: see text]-closed and [Formula: see text]-continuous maps to obtain a characterization of semi-[Formula: see text] spaces.


Author(s):  
Parimala Mani ◽  
Karthika M ◽  
jafari S ◽  
Smarandache F ◽  
Ramalingam Udhayakumar

Neutrosophic nano topology and Nano ideal topological spaces induced the authors to propose this new concept. The aim of this paper is to introduce a new type of structural space called neutrosophic nano ideal topological spaces and investigate the relation between neutrosophic nano topological space and neutrosophic nano ideal topological spaces. We define some closed sets in these spaces to establish their relationships. Basic properties and characterizations related to these sets are given.


Sign in / Sign up

Export Citation Format

Share Document