diffusion front
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 5)

H-INDEX

20
(FIVE YEARS 0)

2021 ◽  
Vol 2103 (1) ◽  
pp. 012184
Author(s):  
V V Andryushkin ◽  
A G Gladyshev ◽  
A V Babichev ◽  
E S Kolodeznyi ◽  
I I Novikov ◽  
...  

Abstract This paper presents a study of Zn diffusion process into InP and InGaAs/InP epitaxial heterostructures grown by molecular beam epitaxy. It was found that both diffusion systems: a resistively heated quartz reactor with a solid-state Zn vapor source placed inside and hydrogen or nitrogen as the carrier gas and MOCVD reactor with hydrogen as the carrier gas allow achieving similar dopant concentration above 2*10e18 cm-3. The depth of the diffusion front in the InP layer is located from 2 to 3.5 μm depending on the temperature and time of the diffusion process. The diffusion of Zn into InP through the intermediate InGaAs layer provides better surface quality comparing with direct zinc diffusion into InP surface.


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Jean-Guy Caputo ◽  
Gustavo Cruz-Pacheco ◽  
Benoît Sarels

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 815
Author(s):  
Valery G. Kulichikhin ◽  
Ivan Y. Skvortsov ◽  
Lydia A. Varfolomeeva

The effect of additives of polydimethylsiloxanes (PDMS) with various molecular weights on the morphology and rheological behavior of polyacrylonitrile (PAN) solutions in dimethyl sulfoxide has been analyzed. It was shown that only partial compatibility of the PDMS with the lowest molecular weight member of the homologous series studied—hexamethyldisiloxane—with PAN solution takes place. All other PDMS samples form emulsions with PAN solutions. The coalescence rate of PDMS drops depends on the viscosity ratio of the disperse phase and the continuous medium, which determines both the duration of dispersion preparation and the conditions for processing emulsions into fibers and films. An anomalous change in viscosity for a series of emulsions with different concentrations of additives, associated with the slippage, was detected. The relaxation properties of emulsions “feel” macro-phase separation. Modeling of the wet spinning process has shown that the morphology of the deposited solution drop reflects the movement of the diffusion front, leading to the gathering droplets in the center of the deposited formulation drop or to their localization in a certain arrangement. It was shown that the emulsion jets upon stretching undergo phase separation.


2019 ◽  
Vol 150 (5) ◽  
pp. 2216-2254
Author(s):  
Yingwei Li

AbstractUsing pointwise semigroup techniques, we establish sharp rates of decay in space and time of a perturbed reaction diffusion front to its time-asymptotic limit. This recovers results of Sattinger, Henry and others of time-exponential convergence in weighted Lp and Sobolev norms, while capturing the new feature of spatial diffusion at Gaussian rate. Novel features of the argument are a pointwise Green function decomposition reconciling spectral decomposition and short-time Nash-Aronson estimates and an instantaneous tracking scheme similar to that used in the study of stability of viscous shock waves.


2019 ◽  
Vol 275 ◽  
pp. 02008
Author(s):  
Tianhua Li ◽  
Zichao Pan ◽  
Wenying Bai ◽  
Kejia Zhang

The chloride ingress is one of the most significant problems to reinforced concrete structures in coastal areas and cold regions where the de-icing salt is commonly used. In this paper, the lattice type model which has been widely used in fracture analysis of brittle materials is applied to simulate the chloride diffusion process in cementitious materials. The theoretical background of the lattice type model in solving the mass transport problem is briefly presented. The analytical solution of the Fick’s law is adopted to theoretically validate the developed lattice type model. After that, two typical case studies are included to demonstrate the application of the lattice type model in the chloride ingress issue. In the first case, the tortuosity effect of the aggregates on the chloride diffusion front at meso-scale is studied by the lattice model. In the second case, the lattice model is applied in the simulation of the chloride diffusion in cracked concrete. The results show that the lattice type model can be a useful tool to simulate the chloride ingress in the cementitious materials.


2018 ◽  
Vol 383 ◽  
pp. 153-158
Author(s):  
Misha Sinder

This is a theoretical study of species profiles during the oxygen chemical diffusion in an acceptor doped oxide crystal driven by large changes in the ambient oxygen partial pressure. The oxide crystal containing three species: mobile oxygen vacancy, mobile electron, immobile dopant ion, is considered. Our analysis is based on the expression of the chemical diffusion coefficient obtained in the framework of the concept of conservative ensembles (Maier J., 1993). It is shown that the dependence of chemical diffusion coefficient on ambient oxygen partial pressure in double-logarithmic coordinates is divided into distinct intervals. For each pressure interval the chemical diffusion equation is reduced to the diffusion equation with a diffusion coefficient which exhibits a power dependence on concentration. First, we analyzed the chemical diffusion under pressure inside each interval. As a result two singularities on the species diffusion profiles can be found: an internal reaction diffusion front, and an ambipolar diffusion front. This ambipolar diffusion front is characterized by a step of the electron concentration, moving inside a specimen. Afterwards, we consider a crystal in which the range of partial pressure spans all considered pressure intervals.


2016 ◽  
Vol 138 (21) ◽  
pp. 6723-6726 ◽  
Author(s):  
Ilaria Bottero ◽  
Jürgen Huck ◽  
Tamara Kosikova ◽  
Douglas Philp

2015 ◽  
Vol 111 (1) ◽  
pp. 239-251 ◽  
Author(s):  
Boris S. Maryshev ◽  
Tatyana P. Lyubimova ◽  
Dmitrii V. Lyubimov

2015 ◽  
Vol 774 ◽  
pp. 170-191 ◽  
Author(s):  
G. Kitenbergs ◽  
A. Tatulcenkovs ◽  
K. Ērglis ◽  
O. Petrichenko ◽  
R. Perzynski ◽  
...  

The micro-convection caused by the ponderomotive forces of the self-magnetic field in a magnetic fluid is studied here both numerically and experimentally. The theoretical approach based on the general Brinkman model substantially improves the description with respect to the previously proposed Darcy model. The predictions of both models are here compared to finely controlled experiments. The Brinkman model, in contrast to the Darcy model, allows us to describe the formation of mushrooms on the plumes of the micro-convective flow and the width of the fingers. In the Brinkman approach, excellent quantitative agreement is also obtained for the finger velocity dynamics and the velocity maximal values as a function of the magnetic Rayleigh number. The diffusion coefficient of particles of the water-based magnetic colloid determined by the threshold field strength value of the micro-convection is significantly larger than the diffusion coefficient of individual particles. This result is confirmed by independent measurements of the diffusion coefficient at the smearing of the diffusion front.


Sign in / Sign up

Export Citation Format

Share Document