Topologized Cut Vertex and Edge Deletion

2017 ◽  
Vol 5 (1) ◽  
pp. 1-12
Author(s):  
S Vimala ◽  
A Amala
Keyword(s):  
2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Wenjun Li ◽  
Xiaojing Tang ◽  
Yongjie Yang
Keyword(s):  

2019 ◽  
Vol 788 ◽  
pp. 2-11 ◽  
Author(s):  
Dongjing Miao ◽  
Zhipeng Cai ◽  
Jiguo Yu ◽  
Yingshu Li
Keyword(s):  

10.37236/499 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Ingo Schiermeyer ◽  
Anders Yeo

For a graph $G$, let $\gamma(G)$ denote the domination number of $G$ and let $\delta(G)$ denote the minimum degree among the vertices of $G$. A vertex $x$ is called a bad-cut-vertex of $G$ if $G-x$ contains a component, $C_x$, which is an induced $4$-cycle and $x$ is adjacent to at least one but at most three vertices on $C_x$. A cycle $C$ is called a special-cycle if $C$ is a $5$-cycle in $G$ such that if $u$ and $v$ are consecutive vertices on $C$, then at least one of $u$ and $v$ has degree $2$ in $G$. We let ${\rm bc}(G)$ denote the number of bad-cut-vertices in $G$, and ${\rm sc}(G)$ the maximum number of vertex disjoint special-cycles in $G$ that contain no bad-cut-vertices. We say that a graph is $(C_4,C_5)$-free if it has no induced $4$-cycle or $5$-cycle. Bruce Reed [Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277–295] showed that if $G$ is a graph of order $n$ with $\delta(G) \ge 3$, then $\gamma(G) \le 3n/8$. In this paper, we relax the minimum degree condition from three to two. Let $G$ be a connected graph of order $n \ge 14$ with $\delta(G) \ge 2$. As an application of Reed's result, we show that $\gamma(G) \le \frac{1}{8} ( 3n + {\rm sc}(G) + {\rm bc}(G))$. As a consequence of this result, we have that (i) $\gamma(G) \le 2n/5$; (ii) if $G$ contains no special-cycle and no bad-cut-vertex, then $\gamma(G) \le 3n/8$; (iii) if $G$ is $(C_4,C_5)$-free, then $\gamma(G) \le 3n/8$; (iv) if $G$ is $2$-connected and $d_G(u) + d_G(v) \ge 5$ for every two adjacent vertices $u$ and $v$, then $\gamma(G) \le 3n/8$. All bounds are sharp.


Author(s):  
Modjtaba Ghorbani ◽  
Mardjan Hakimi-Nezhaad ◽  
Lihua Feng

Following Estrada's method, as given in [1], Ghorbani et al. communicated in [2], and later also in [3], the following result on A-energy.


2015 ◽  
Vol 29 ◽  
pp. 59-73
Author(s):  
Wen-Huan Wang ◽  
Wasin So

The energy of a graph is the sum of the absolute values of its eigenvalues. We propose a new problem on graph energy change due to any single edge deletion. Then we survey the literature for existing partial solution of the problem, and mention a conjecture based on numerical evidence. Moreover, we prove in three different ways that the energy of a cycle graph decreases when an arbitrary edge is deleted except for the order of 4.


Sign in / Sign up

Export Citation Format

Share Document