scholarly journals Global Existence and Boundedness of a Two-Competing-Species Chemotaxis Model

Author(s):  
Liangying Miao

In this paper, we consider the following fully parabolic two-competing-species chemotaxis model $$\left\{\begin{array}{ll}\displaystyle u_{1t}=\Delta{u_{1}}-\chi \nabla\cdot(u_{1}\nabla{v_{1}})+\mu_{1}u_{1}(1-u_{1}-e_{1}u_{2}),&x\in\Omega,~ t>0,\\\displaystyle u_{2t}=\Delta{u_{2}}-\xi\nabla\cdot(u_{2}\nabla{v_{2}})+\mu_{2}u_{2}(1-e_{2}u_{1}-u_{2}),&x\in\Omega,~t>0,\\\displaystyle v_{1t}=\Delta{v_{1}}+u_{1}- v_{1},&x\in\Omega,~ t>0, \\\displaystyle v_{2t}=\Delta{v_{2}}+u_{2}- v_{2},&x\in\Omega,~ t>0\end{array}\right.$$ under homogeneous Neumann boundary conditions, where Ω ⊂ ℝn  (n≥3) is a convex bounded domain with smooth boundary. Relying on a comparison principle, we show that the problem possesses a uniqueglobal bounded solution if μ1 and μ2 are large enough.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Heping Ma

In this study, we deal with the chemotaxis system with singular sensitivity by two stimuli under homogeneous Neumann boundary conditions in a bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, we show that the system possesses global classical solution. Our results generalize and improve previously known ones.


2014 ◽  
Vol 971-973 ◽  
pp. 1017-1020
Author(s):  
Jun Zhou Shao ◽  
Ji Jun Xu

This paper deals with the properties of one kind of reaction-diffusion equations with Neumann boundary conditions based on the comparison principles. The relations of parameter and the situation of the coupled about equations are used to construct the global existent super-solutions and the blowing-up sub-solutions, and then we obtain the conditions of the global existence and blow-up in finite time solutions with the processing techniques of inequality.


2015 ◽  
Vol 159 (2) ◽  
pp. 303-319 ◽  
Author(s):  
RAFE MAZZEO ◽  
JULIE ROWLETT

AbstractLet Ω0be a polygon in$\mathbb{R}$2, or more generally a compact surface with piecewise smooth boundary and corners. Suppose that Ωεis a family of surfaces with${\mathcal C}$∞boundary which converges to Ω0smoothly away from the corners, and in a precise way at the vertices to be described in the paper. Fedosov [6], Kac [8] and McKean–Singer [13] recognised that certain heat trace coefficients, in particular the coefficient oft0, are not continuous as ε ↘ 0. We describe this anomaly using renormalized heat invariants of an auxiliary smooth domainZwhich models the corner formation. The result applies to both Dirichlet and Neumann boundary conditions. We also include a discussion of what one might expect in higher dimensions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jie Zhao

<p style='text-indent:20px;'>This paper deals with the dynamical properties of the quasilinear parabolic-parabolic chemotaxis system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{llll} u_{t} = \nabla\cdot(D(u)\nabla u)-\chi\nabla\cdot(\frac{u}{v} \nabla v)+\mu u- \mu u^{2}, \, \, \, &amp;x\in\Omega, \, \, \, t&gt;0, \\ v_{t} = \Delta v-v+u, &amp;x\in\Omega, \, \, \, t&gt;0, \end{array} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a convex bounded domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset\mathbb{R}^{n} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ n\geq2 $\end{document}</tex-math></inline-formula>, with smooth boundary. <inline-formula><tex-math id="M3">\begin{document}$ \chi&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ \mu&gt;0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ D(u) $\end{document}</tex-math></inline-formula> is supposed to satisfy the behind properties</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \begin{split} D(u)\geq (u+1)^{\alpha} \, \, \, \text{with}\, \, \, \alpha&gt;0. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>It is shown that there is a positive constant <inline-formula><tex-math id="M6">\begin{document}$ m_{*} $\end{document}</tex-math></inline-formula> such that</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ \begin{equation*} \begin{split} \int_{\Omega}u\geq m_{*} \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>for all <inline-formula><tex-math id="M7">\begin{document}$ t\geq0 $\end{document}</tex-math></inline-formula>. Moreover, we prove that the solution is globally bounded. Finally, it is asserted that the solution exponentially converges to the constant stationary solution <inline-formula><tex-math id="M8">\begin{document}$ (1, 1) $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document