Complementation of Multi-State System Success to Obtain System Failure and Utilization of Both Boolean Functions in Checking Reliability Expressions

2021 ◽  
pp. 141-154
Author(s):  
Ali Muhammad Ali Rushdi ◽  
Motaz Hussain Amashah
Author(s):  
Ali Muhammad Ali Rushdi ◽  
Motaz Hussain Amashah

This paper addresses two important useful extensions of binary reliability techniques to multi-state reliability techniques, namely: (a) the problem of complementation or inversion of the function of system success to that of system failure (or equivalently, of deriving the logical minimal cutsets in terms of the logical minimal paths), and (b) the associated problem of hand-checking of a symbolic reliability expression. The paper deals specifically with the reliability of a multi-state delivery network. It presents two complementation procedures, one via the application of multi-state De Morgan’s rules, and the other via the multi-state Boole-Shannon expansion. The paper also illustrates one case in which this complementation is needed, as it outlines a method for checking the reliability of the multi-state system in terms of its logical minimal paths and logical minimal cutsets.


Author(s):  
Ali Muhammad Ali Rushdi ◽  
Fares Ahmad Muhammad Ghaleb

A notable reliability model is the binary threshold system (also called the weighted-k-out-of-n system), which is a dichotomous system that is successful if and only if the weighted sum of its component successes exceeds or equals a particular threshold. The aim of this paper is to extend the utility of this model to the reliability analysis of a homogeneous binary-imaged multi-state coherent threshold system of (m+1) states, which is a non-repairable system with independent non-identical components. The paper characterizes such a system via switching-algebraic expressions of either system success or system failure at each non-zero level. These expressions are given either (a) as minimal sum-of-products formulas, or (b) as probability–ready expressions, which can be immediately converted, on a one-to-one basis, into probabilities or expected values. The various algebraic characterizations can be supplemented by a multitude of map representations, including a single multi-value Karnaugh map (MVKM) (giving a superfluous representation of the system structure function S), (m+1) maps of binary entries and multi-valued inputs representing the binary instances of S, or m maps, again of binary entries and multi-valued inputs, but now representing the success/failure at every non-zero level of the system. We demonstrate how to reduce these latter maps to conventional Karnaugh maps (CKMs) of much smaller sizes. Various characterizations are inter-related, and also related to pertinent concepts such as shellability of threshold systems, and also to characterizations via minimal upper vectors or via maximal lower vectors.


2019 ◽  
Vol 6 (2) ◽  
pp. 90-94
Author(s):  
Hernandez Piloto Daniel Humberto

In this work a class of functions is studied, which are built with the help of significant bits sequences on the ring ℤ2n. This class is built with use of a function ψ: ℤ2n → ℤ2. In public literature there are works in which ψ is a linear function. Here we will use a non-linear ψ function for this set. It is known that the period of a polynomial F in the ring ℤ2n is equal to T(mod 2)2α, where α∈ , n01- . The polynomials for which it is true that T(F) = T(F mod 2), in other words α = 0, are called marked polynomials. For our class we are going to use a polynomial with a maximum period as the characteristic polyomial. In the present work we show the bounds of the given class: non-linearity, the weight of the functions, the Hamming distance between functions. The Hamming distance between these functions and functions of other known classes is also given.


Sign in / Sign up

Export Citation Format

Share Document