scholarly journals Global Existence and Blow-up of Classical Solution for an Attraction-repulsion Chemotaxis System with Logistic Source

Author(s):  
Lijun Yan ◽  
Zuodong Yang

We consider the following quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic-elliptic type with logistic source under homegeneous Neumann boundary conditions in a bounded domain `\Omega\subset R^{n}(n\geq2)` with smooth boundary, where`D(u)\geq c_{D}(u+1)^{m-1}` with `m\geq1`and `c_{D}>0`, `f(u)\leq a-bu^{\eta}` with `\eta>1`.{ We show two cases that the system admits a uniqueglobal bounded classical solution depending on `0\leq S(u)\leq C_{s}(u+1)^{q}, 0\leq F(u)\leq C_{F}(u+1)^{g}` by Gagliardo-Nirenberg inequality.For specific `D(u),S(u),F(u)` with logistic source for `\eta>1` and `n=2`, we establish the finite time blow-up conditions forsolutions that the finite time blow-up occurs at `x_{0}\in\Omega` whenever `\int_{\Omega}u_{0}(x)dx>\frac{8\pi}{\chi\alpha-\xi\gamma}`with `\chi\alpha-\xi\gamma>0`, under `\int_{\Omega}u_{0}(x)|x-x_{0}|^{2}dx` sufficiently small.

Author(s):  
Wenbin Lv ◽  
Qingyuan Wang

Abstract This paper deals with the global existence for a class of Keller–Segel model with signal-dependent motility and general logistic term under homogeneous Neumann boundary conditions in a higher-dimensional smoothly bounded domain, which can be written as $$\eqalign{& u_t = \Delta (\gamma (v)u) + \rho u-\mu u^l,\quad x\in \Omega ,\;t > 0, \cr & v_t = \Delta v-v + u,\quad x\in \Omega ,\;t > 0.} $$ It is shown that whenever ρ ∈ ℝ, μ > 0 and $$l > \max \left\{ {\displaystyle{{n + 2} \over 2},2} \right\},$$ then the considered system possesses a global classical solution for all sufficiently smooth initial data. Furthermore, the solution converges to the equilibrium $$\left( {{\left( {\displaystyle{{\rho _ + } \over \mu }} \right)}^{1/(l-1)},{\left( {\displaystyle{{\rho _ + } \over \mu }} \right)}^{1/(l-1)}} \right)$$ as t → ∞ under some extra hypotheses, where ρ+ = max{ρ, 0}.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Heping Ma

In this study, we deal with the chemotaxis system with singular sensitivity by two stimuli under homogeneous Neumann boundary conditions in a bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, we show that the system possesses global classical solution. Our results generalize and improve previously known ones.


2014 ◽  
Vol 971-973 ◽  
pp. 1017-1020
Author(s):  
Jun Zhou Shao ◽  
Ji Jun Xu

This paper deals with the properties of one kind of reaction-diffusion equations with Neumann boundary conditions based on the comparison principles. The relations of parameter and the situation of the coupled about equations are used to construct the global existent super-solutions and the blowing-up sub-solutions, and then we obtain the conditions of the global existence and blow-up in finite time solutions with the processing techniques of inequality.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jie Zhao

<p style='text-indent:20px;'>This paper deals with the dynamical properties of the quasilinear parabolic-parabolic chemotaxis system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{llll} u_{t} = \nabla\cdot(D(u)\nabla u)-\chi\nabla\cdot(\frac{u}{v} \nabla v)+\mu u- \mu u^{2}, \, \, \, &amp;x\in\Omega, \, \, \, t&gt;0, \\ v_{t} = \Delta v-v+u, &amp;x\in\Omega, \, \, \, t&gt;0, \end{array} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a convex bounded domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset\mathbb{R}^{n} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ n\geq2 $\end{document}</tex-math></inline-formula>, with smooth boundary. <inline-formula><tex-math id="M3">\begin{document}$ \chi&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ \mu&gt;0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ D(u) $\end{document}</tex-math></inline-formula> is supposed to satisfy the behind properties</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \begin{split} D(u)\geq (u+1)^{\alpha} \, \, \, \text{with}\, \, \, \alpha&gt;0. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>It is shown that there is a positive constant <inline-formula><tex-math id="M6">\begin{document}$ m_{*} $\end{document}</tex-math></inline-formula> such that</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ \begin{equation*} \begin{split} \int_{\Omega}u\geq m_{*} \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>for all <inline-formula><tex-math id="M7">\begin{document}$ t\geq0 $\end{document}</tex-math></inline-formula>. Moreover, we prove that the solution is globally bounded. Finally, it is asserted that the solution exponentially converges to the constant stationary solution <inline-formula><tex-math id="M8">\begin{document}$ (1, 1) $\end{document}</tex-math></inline-formula>.</p>


Author(s):  
Liangying Miao

In this paper, we consider the following fully parabolic two-competing-species chemotaxis model $$\left\{\begin{array}{ll}\displaystyle u_{1t}=\Delta{u_{1}}-\chi \nabla\cdot(u_{1}\nabla{v_{1}})+\mu_{1}u_{1}(1-u_{1}-e_{1}u_{2}),&x\in\Omega,~ t>0,\\\displaystyle u_{2t}=\Delta{u_{2}}-\xi\nabla\cdot(u_{2}\nabla{v_{2}})+\mu_{2}u_{2}(1-e_{2}u_{1}-u_{2}),&x\in\Omega,~t>0,\\\displaystyle v_{1t}=\Delta{v_{1}}+u_{1}- v_{1},&x\in\Omega,~ t>0, \\\displaystyle v_{2t}=\Delta{v_{2}}+u_{2}- v_{2},&x\in\Omega,~ t>0\end{array}\right.$$ under homogeneous Neumann boundary conditions, where Ω ⊂ ℝn  (n≥3) is a convex bounded domain with smooth boundary. Relying on a comparison principle, we show that the problem possesses a uniqueglobal bounded solution if μ1 and μ2 are large enough.


Sign in / Sign up

Export Citation Format

Share Document