scholarly journals TRANSIENT RIPPLE FORMATION AND SEDIMENT TRANSPORT

1986 ◽  
Vol 1 (20) ◽  
pp. 120
Author(s):  
Suphat Vongvisessomjai ◽  
L.C.J. Munasinghe ◽  
P.P. Gunaratna

A knowledge of sediment transport rates due to wave action is essential for an understanding of various coastal engineering problems. Many problems have to be resolved before successful measurement can be made for sediment transport rates due to waves. Since gradients of sediment transport cause changes of beach morphology, the sediment transport rate outside breaker can be determined from measured beach changes. Measurements of ripple growth and migration yield their mathematical descriptions in the same manner as those of surface waves. Expressions of sediment transport rates are then derived. It is found from the study that the sediment transport rates are strongly controlled by the rates of growth and migration of ripples.

1982 ◽  
Vol 1 (18) ◽  
pp. 94
Author(s):  
L. Lenhoff

This paper is aimed at the establishment of a generally applicable criterion for the onset of grain motion under the influence of oscillatory flow. Data from previous studies are used in a dimensional analysis and an empirically derived relationship between the dimensionless parameters R* (shear Reynolds number) and D* (dimensionless grain parameter) is proposed as a criterion to be used in coastal engineering problems. This study forms part of a larger programme by the Sediment Dynamics Division of the National Research Institute for Oceanology in Stellenbosch, RSA, which is aimed at the reevaluation and updating of the input parameters and relationships for the predictive equations for coastal sediment transport.


2020 ◽  
Author(s):  
Katrien Van Landeghem ◽  
Irinios Yiannoukos ◽  
Connor McCarron ◽  
Jacob Morgan ◽  
Barney Clayton-Smith

<p>Coarse and bimodal sediment mixtures like sand and gravel are common in palaeo-glaciated shelf seas and in coastal environments. Their presence leads to more complex sediment transport and morphodynamic processes, depending on the ratio of sand to gravel in the bed. With increased pressure on our near-and offshore sea beds, there is a growing need to more accurately model sediment transport and bedform dynamics with an increasing focus on bimodal sand-gravel sediment mixtures. Revisiting the quantification of the hiding-exposure (HE) effect highlighted how differently sized grains in a bimodal mixture modify each other’s threshold of motion. The critical shear stress needed to mobilise the sand and gravel fractions increased by up to 75% and decreased by up to 64% respectively, compared to that needed to mobilise well-sorted sediment of similar size. Implementation of this newly quantified HE correction in current-and wave-driven models illustrated that its influence on bedload transport rates and bed morphodynamics was greatest for mixtures where gravel percentage ranges between 10 and 20 %. Laboratory experiments were therefore conducted to investigate ripple formation and bed dynamics in mixtures with gravel percentage between 0 and 25%. The development of initial bedforms was quicker in sand-gravel mixtures compared to those developed in pure sand, whilst final heights and migration rates of the developed ripples decreased with increasing fraction of gravel in the bed. During this presentation, a full comparison will be made of the morphology and “down-core” sedimentary properties of ripples formed at different flow speeds. If we want to use our seabeds cost-effectively and sustainably, we need a better understanding on the influence of a decreased mobilisation of the finer fractions and an increased mobilisation of the coarser fraction on the dynamics of beds with a bimodal sediment composition.</p>


2018 ◽  
Vol 6 (4) ◽  
pp. 989-1010 ◽  
Author(s):  
Chenge An ◽  
Andrew J. Moodie ◽  
Hongbo Ma ◽  
Xudong Fu ◽  
Yuanfeng Zhang ◽  
...  

Abstract. Sediment mass conservation is a key factor that constrains river morphodynamic processes. In most models of river morphodynamics, sediment mass conservation is described by the Exner equation, which may take various forms depending on the problem in question. One of the most widely used forms of the Exner equation is the flux-based formulation, in which the conservation of bed material is related to the stream-wise gradient of the sediment transport rate. An alternative form of the Exner equation, however, is the entrainment-based formulation, in which the conservation of bed material is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. Here we represent the flux form in terms of the local capacity sediment transport rate and the entrainment form in terms of the local capacity entrainment rate. In the flux form, sediment transport is a function of local hydraulic conditions. However, the entrainment form does not require this constraint: only the rate of entrainment into suspension is in local equilibrium with hydraulic conditions, and the sediment transport rate itself may lag in space and time behind the changing flow conditions. In modeling the fine-grained lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment (nonequilibrium) form rather than a flux (equilibrium) form, in consideration of the condition that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations have not been comprehensively studied to date. Here we study this problem by comparing the results predicted by both the flux form and the entrainment form of the Exner equation under conditions simplified from the lower Yellow River (i.e., a significant reduction of sediment supply after the closure of the Xiaolangdi Dam). We use a one-dimensional morphodynamic model and sediment transport equations specifically adapted for the lower Yellow River. We find that in a treatment of a 200 km reach using a single characteristic bed sediment size, there is little difference between the two forms since the corresponding adaptation length is relatively small. However, a consideration of sediment mixtures shows that the two forms give very different patterns of grain sorting: clear kinematic waves occur in the flux form but are diffused out in the entrainment form. Both numerical simulation and mathematical analysis show that the morphodynamic processes predicted by the entrainment form are sensitive to sediment fall velocity. We suggest that the entrainment form of the Exner equation might be required when the sorting process of fine-grained sediment is studied, especially when considering relatively short timescales.


1990 ◽  
pp. 295-296
Author(s):  
Shunsuke IKEDA ◽  
Makoto IFUKU ◽  
Tadao KAKINUMA ◽  
Hiromitsu GOTOH

1976 ◽  
Vol 1 (15) ◽  
pp. 70 ◽  
Author(s):  
Richard O. Bruno ◽  
Christopher G. Gable

Analysis of longshore transport at a littoral barrier is presented. Channel Islands Harbor, California was selected as the study site because its offshore breakwater and jetties form a unique complete littoral barrier. Through repetitive surveys an accurate determination of longshore material transport in one direction was made. Measured transport rates ranged from 160,000 to 1,284,000 cubic meters per year. Utilizing visual observations of surf parameters, estimates of longshore wave thrust were computed. The range of wave thrust was 145 to 1,988 Newtons per meter. Comparison of the relation of wave thrust and longshore sediment transport is made. This study indicates that in an environment of high transport, nearly twice as much transport is predicted tinder corresponding wave thrust as that of the data summarized in the Coastal Engineering Research Center's Shore Protection Manual.


2010 ◽  
Vol 1 (1) ◽  
pp. 8
Author(s):  
Robert S. Arthur

As a result of wartime research on ocean surface waves a method has been available since 1943 for the prediction of wave characteristics of interest to engineers (O'Brien and Johnson, 1947). The initial stimulus for the development came during the planning of the invasion of North Africa, and the methods subsequently devised were later used in a number of amphibious operations (Bates, 1949). The same techniques have found useful peacetime application in problems connected with coastal engineering. Much of the application to date has consisted in applying wave prediction techniques to historical rather than current meteorological data, hence the term "wave hindcasting."


Sign in / Sign up

Export Citation Format

Share Document