sediment mass
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Brent S Hawks ◽  
M Chad Bolding ◽  
W Michael Aust ◽  
Scott M Barrett ◽  
Erik Schilling ◽  
...  

Abstract Forestry best management practices (BMPs) were created in response to the Clean Water Act of 1972 to protect water quality from nonpoint source pollutants such as sediment. The objectives of this study were to quantify the relationship between BMP implementation and sediment delivery on 58 recently harvested sites across three physiographic regions and five forest operational features. BMP implementation rates, erosion rates, sediment delivery ratios, and sediment masses were calculated at 183 silt fences functioning as sediment traps adjacent to streams in Virginia and North Carolina. Major access system features, including stream crossings, skid trails, and haul roads, typically delivered the greatest sediment mass to streams and had the highest sediment delivery ratios on a per feature basis. When accounting for sediment mass delivered and area in each feature, harvest area accounted for approximately 70% of sediment delivered to streams for all regions. Most features had proportionally higher erosion rates than sediment masses collected at silt fences, indicating that most erosion generated by forest operations is being trapped by either harvest areas or streamside management zones. For most features and regions, as BMP implementation increased, erosion rates and the sediment masses delivered to streams decreased. Study Implications Forestry best management practices (BMPs) are designed to mitigate the amount of sediment entering streams and affecting other aquatic features as a result of forest operations. In this study, a significant inverse relationship between BMP implementation and the amount of sediment delivered to streams was found, indicating that increasing levels of BMP implementation reduces sediment delivery. Most of the erosion caused by forest operations is being trapped before it is delivered to streams. This research highlights the importance of leaving streamside management zones along streams and minimizing the extent of bare soil and area in temporary and permanent roads.


2021 ◽  
Vol 24 (1) ◽  
pp. 45-55
Author(s):  
Victorino Bato ◽  
◽  
Eduardo Paningbatan, Jr. ◽  
Victor Ella ◽  
Antonio Alcantara ◽  
...  

A dynamic, physical model was created to predict soil erosion of Lagawe River Sub-watershed, a sub-watershed of Magat River Watershed, Philippines. Tipping-bucket rain gauge was installed to gather event-based rainfall data and a water-level recorder was installed on a straight segment of Lagawe River to gather water depth. Sediment samples were taken during rainstorm events and were used to calibrate the model. Manning’s equation was used to calculate surface runoff and stream flow velocity. Rose’ and Freebairn’s Equation was used to calculate sediment mass. Geographic Information System was utilized as a tool for modelling using PCRaster Software. The model estimated a total of 57,905,000 m3 of eroded sediments which was generated during Typhoon Koppu (local name, Lando) in year 2015. A Welch Two Sample t-value of -0.25 and a p-value of 0.81 was achieved on the statistical analysis between the measured sediment yield and the output of the model. Since the p-value is greater than 0.05 (5%), there is no significant difference between the output of the physical dynamic model and the measured value for sediment yield. Likewise, the correlation analysis supports this conclusion with a linearly positive R2 value of 0.74.


2021 ◽  
Author(s):  
Ngoc Diep Nguyen ◽  
Malgorzata Grybos ◽  
Marion Rabiet ◽  
Véronique Deluchat

<p>The hydrodynamics of dam reservoirs favor the accumulation of phosphorus (P) in bottom sediments since it has a strong affinity for the sedimentary particles. However mechanical disturbance of sediment (resuspension) may release P back to water column. The load of sedimentary P poses a serious ecological problem related to the maintaining of water eutrophication. The aim of this study was to evaluate the potential of sediments, accumulated in Champsanglard reservoir (Central France), to release water-mobilizable colloidal and dissolved P. A sampling campaign was carried out at different locations along the main channel of reservoir from riverine to lacustrine area and characterized by different hydrodynamics. The results showed that colloids are intrinsic component of reservoir sediment and contribute up to 2.3% of sediment mass. Colloidal P attributed up to 6% of total sedimentary P and 80% of water-mobilizable P (fraction < 1 µm). The stock of water-mobilizable colloids and associated P varied according to particle size distribution and was strongly dependent to channel morphology, hydrodynamics and inlet of tributary.</p><p><strong>Keywords: </strong>Dam reservoir, sedimentary colloids, phosphorus form, spatial variability</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Filippo Zaniboni ◽  
Gianluca Pagnoni ◽  
Maria Ausilia Paparo ◽  
Tugdual Gauchery ◽  
Marzia Rovere ◽  
...  

Geophysical surveys in the eastern slope of the Gela Basin (Strait of Sicily, central Mediterranean) contributed to the identification of several episodes of sediment mass transport, recorded by scars and deposits of various dimensions within the Pleistocene succession. In addition to a huge failure called Gela Slide with volume exceeding 600 km3, the most studied events show volumes estimated between 0.5 and 1.5 km3, which is common to many other submarine landslide deposits in this region and that can therefore be considered as a characteristic value. In this work, the tsunamigenic potential of two of such landslides, the so-called Northern Twin Slide and South Gela Basin Slide located about 50 km apart along the eastern slope of the Gela Basin, are investigated using numerical codes that describe the onset and motion of the slide, as well as the ensuing tsunami generation and propagation. The results provide the wave height of these tsunami events on the coast of southern Sicily and Malta and can be taken as representative of the tsunamigenic potential of typical landslides occurring along the slope of the Gela Basin.


Author(s):  
Nina Alekseyevna Dyakova ◽  
Sergey Petrovich Gaponov ◽  
Aleksey Ivanovich Slivkin

The aim of the study was to develop and validate an express procedure for the isolation and quantification of water-soluble polysaccharides from high devisyl roots (Ínula helenium L.). In order to accelerate the process of extracting biologically active substances from the roots of high devisil, as well as to increase the yield of water-soluble polysaccharides, it was decided to use an ultrasonic bath. By varying the process parameters, it was possible to select optimal extraction conditions of water-soluble polysaccharides of high-grade roots under ultrasound treatment conditions: raw material grinding 0.5–1.0 mm, temperature – 80 °C, extraction multiplicity – 3, extraction duration – 15 min, ultrasound frequency – 35 kHz, ratio of raw material to extractor 1 g per 15 ml. The proposed technique allows to intensify the process of preparing polysaccharides water-soluble from roots high and to reduce the time spent on it up to 4-5 hours, as well as to increase the yield of the product up to 31.6% in terms of absolutely dry raw materials. The developed method is precise under the conditions of repeatability, correct, stable and has a rather strict linear dependence of the sediment mass on the analysed raw material mass at gravimetric determination of polysaccharides water-soluble in the roots of high devisil. The technique can be used for express analysis of high devasil roots quality, as well as for industrial production of water-soluble polysaccharides from this kind of raw material.


Author(s):  
Lu Wang ◽  
Mary K. English ◽  
Fiona Tomas ◽  
Ryan S. Mueller

Seagrasses can form mutualisms with their microbiomes that facilitate the exchange of energy sources, nutrients, and hormones, and ultimately impact plant stress resistance. Little is known about community succession within the belowground seagrass microbiome after disturbance and its potential role in the plant’s recovery after transplantation. We transplanted Zostera marina shoots with and without an intact rhizosphere, and cultivated plants for four weeks while characterizing microbiome recovery and effects on plant traits. Rhizosphere and root microbiomes were compositionally distinct, likely representing discrete microbial niches. Furthermore, microbiomes of washed transplants were initially different from those of sod transplants, and recovered to resemble an undisturbed state within fourteen days. Conspicuously, changes in microbial communities of washed transplants corresponded with changes in rhizosphere sediment mass and root biomass, highlighting the strength and responsive nature of the relationship between plants, their microbiome, and the environment. Potential mutualistic microbes that were enriched over time include those that function in the cycling and turnover of sulfur, nitrogen, and plant-derived carbon in the rhizosphere environment. These findings highlight the importance and resiliency of the seagrass microbiome after disturbance. Consideration of the microbiome will have meaningful implications on habitat restoration practices. Importance Seagrasses are important coastal species that are declining globally, and transplantation can be used to combat these declines. However, the bacterial communities associated with seagrass rhizospheres and roots (the microbiome) are often disturbed or removed completely prior to transplantation. The seagrass microbiome benefits seagrasses through metabolite, nutrient, and phytohormone exchange, and contributes to the ecosystem services of seagrass meadows by cycling sulfur, nitrogen, and carbon. This experiment aimed to characterize the importance and resilience of the seagrass belowground microbiome by transplanting Zostera marina with and without intact rhizospheres and tracking microbiome and plant morphological recovery over four weeks. We found the seagrass microbiome to be resilient to transplantation disturbance, recovering after fourteen days. Additionally, microbiome recovery was linked with seagrass morphology, coinciding with increases in rhizosphere sediment mass and root biomass. Results of this study can be used to include microbiome responses in informing future restoration work.


2020 ◽  
Vol 8 ◽  
Author(s):  
Andrew Mitchell ◽  
Scott McDougall ◽  
Jordan Aaron ◽  
Marc-André Brideau

Author(s):  
Charles M. Shobe ◽  
Georgina L. Bennett ◽  
Gregory E. Tucker ◽  
Kevin Roback ◽  
Scott R. Miller ◽  
...  

Constraining Earth’s sediment mass balance over geologic time requires a quantitative understanding of how landscapes respond to transient tectonic perturbations. However, the mechanisms by which bedrock lithology governs landscape response remain poorly understood. Rock type influences the size of sediment delivered to river channels, which controls how efficiently rivers respond to tectonic forcing. The Mendocino triple junction region of northern California, USA, is one landscape in which large boulders, delivered by hillslope failures to channels, may alter the pace of landscape response to a pulse of rock uplift. Boulders frequently delivered by earthflows in one lithology, the Franciscan mélange, have been hypothesized to steepen channels and slow river response to rock uplift, helping to preserve high-elevation, low-relief topography. Channels in other units (the Coastal Belt and the Franciscan schist) may experience little or no erosion inhibition due to boulder delivery. Here we investigate spatial patterns in channel steepness, an indicator of erosion resistance, and how it varies between mélange and non-mélange channels. We then ask whether lithologically controlled boulder delivery to rivers is a possible cause of steepness variations. We find that mélange channels are steeper than Coastal Belt channels but not steeper than schist channels. Though channels in all units steepen with increasing proximity to mapped hillslope failures, absolute steepness values near failures are much higher (∼2×) in the mélange and schist than in Coastal Belt units. This could reflect reduced rock erodibility or increased erosion rates in the mélange and schist, or disproportionate steepening due to enhanced boulder delivery by hillslope failures in those units. To investigate the possible influence of lithology-dependent boulder delivery, we map boulders at failure toes in the three units. We find that boulder size, frequency, and concentration are greatest in mélange channels and that Coastal Belt channels have the lowest concentrations. Using our field data to parameterize a mathematical model for channel slope response to boulder delivery, we find that the modeled influence of boulders in the mélange could be strong enough to account for some observed differences in channel steepness between lithologies. At the landscape scale, we lack the data to fully disentangle boulder-induced steepening from that due to spatially varying erosion rates and in situ rock erodibility. However, our boulder mapping and modeling results suggest that lithology-dependent boulder delivery to channels could retard landscape adjustment to tectonic forcing in the mélange and potentially also in the schist. Boulder delivery may modulate landscape response to tectonics and help preserve high-elevation, low-relief topography at the Mendocino triple junction and elsewhere.


2020 ◽  
Vol 8 (2) ◽  
pp. 555-577
Author(s):  
Maxime Mouyen ◽  
Philippe Steer ◽  
Kuo-Jen Chang ◽  
Nicolas Le Moigne ◽  
Cheinway Hwang ◽  
...  

Abstract. The accurate quantification of sediment mass redistribution is central to the study of surface processes, yet it remains a challenging task. Here we test a new combination of terrestrial gravity and drone photogrammetry methods to quantify sediment mass redistribution over a 1 km2 area. Gravity and photogrammetry are complementary methods. Indeed, gravity changes are sensitive to mass changes and to their location. Thus, by using photogrammetry data to constrain this location, the sediment mass can be properly estimated from the gravity data. We carried out three joint gravimetry–photogrammetry surveys, once a year in 2015, 2016 and 2017, over a 1 km2 area in southern Taiwan, featuring both a wide meander of the Laonong River and a slow landslide. We first removed the gravity changes from non-sediment effects, such as tides, groundwater, surface displacements and air pressure variations. Then, we inverted the density of the sediment with an attempt to distinguish the density of the landslide from the density of the river sediments. We eventually estimate an average loss of 3.7 ± 0.4 × 109 kg of sediment from 2015 to 2017 mostly due to the slow landslide. Although the gravity devices used in this study are expensive and need week-long surveys, new instrumentation currently being developed will enable dense and continuous measurements at lower cost, making the method that has been developed and tested in this study well-suited for the estimation of erosion, sediment transfer and deposition in landscapes.


Sign in / Sign up

Export Citation Format

Share Document