Sediment Concentration
Recently Published Documents


TOTAL DOCUMENTS

1167
(FIVE YEARS 474)

H-INDEX

50
(FIVE YEARS 17)

Author(s):  
Lin Hua ◽  
Hong Li ◽  
Chen Chao ◽  
Jiang Yue ◽  
Zhang Zhonghua

Abstract The effects of sandy water on the W-shaped labyrinth channel of micro-sprinkler irrigation systems with large flowrate were investigated using Computational Fluid Dynamics (CFD). Using ANSYS FLUENT software and different inflow conditions (e.g., pressure, velocity, sediment concentration, and sand particle diameter), internal turbulent multiphase flow and sand deposition were simulated by the Eulerian multiphase flow model. Particle erosion in the labyrinth channel was calculated by the Discrete Phase Model (DPM). The results show that vortex movements and shear actions at the boundary layer cause self-flushing in the channel. The location of sand particle deposits and the turbulent dissipation rate are related to the operating pressure, which is optimal at 300 kPa. The erosion rate of the channel wall is proportional to the inflow sediment concentration but has no obvious relationship with inflow velocity. Based on the movement regulation of sand particles in the labyrinth channel, recommendations on filtration requirements and operating pressure of irrigation systems are proposed.


2021 ◽  
Vol 9 (11) ◽  
pp. 1300
Author(s):  
Troels Aagaard ◽  
Joost Brinkkemper ◽  
Drude F. Christensen ◽  
Michael G. Hughes ◽  
Gerben Ruessink

The existence of sandy beaches relies on the onshore transport of sand by waves during post-storm conditions. Most operational sediment transport models employ wave-averaged terms, and/or the instantaneous cross-shore velocity signal, but the models often fail in predictions of the onshore-directed transport rates. An important reason is that they rarely consider the phase relationships between wave orbital velocity and the suspended sediment concentration. This relationship depends on the intra-wave structure of the bed shear stress and hence on the timing and magnitude of turbulence production in the water column. This paper provides an up-to-date review of recent experimental advances on intra-wave turbulence characteristics, sediment mobilization, and suspended sediment transport in laboratory and natural surf zones. Experimental results generally show that peaks in the suspended sediment concentration are shifted forward on the wave phase with increasing turbulence levels and instantaneous near-bed sediment concentration scales with instantaneous turbulent kinetic energy. The magnitude and intra-wave phase of turbulence production and sediment concentration are shown to depend on wave (breaker) type, seabed configuration, and relative wave height, which opens up the possibility of more robust predictions of transport rates for different wave and beach conditions.


2021 ◽  
Vol 9 (11) ◽  
pp. 1258
Author(s):  
Viet Thanh Nguyen ◽  
Minh Tuan Vu ◽  
Chi Zhang

Two-dimensional models of large spatial domain including Cua Lo and Cua Hoi estuaries in Nghe An province, Vietnam, were established, calibrated, and verified with the observed data of tidal level, wave height, wave period, wave direction, and suspended sediment concentration. The model was then applied to investigate the hydrodynamics, cohesive sediment transport, and the morphodynamics feedbacks between two estuaries. Results reveal opposite patterns of nearshore currents affected by monsoons, which flow from the north to the south during the northeast (NE) monsoon and from the south to the north during the southeast (SE) monsoon. The spectral wave model results indicate that wave climate is the main control of the sediment transport in the study area. In the NE monsoon, sediment from Cua Lo port transported to the south generates the sand bar in the northern bank of the Cua Hoi estuary, while sediment from Cua Hoi cannot be carried to the Cua Lo estuary due to the presence of Hon Ngu Island and Lan Chau headland. As a result, the longshore sediment transport from the Cua Hoi estuary to the Cua Lo estuary is reduced and interrupted. The growth and degradation of the sand bars at the Cua Hoi estuary have a great influence on the stability of the navigation channel to Ben Thuy port as well as flood drainage of Lam River.


CATENA ◽  
2022 ◽  
Vol 209 ◽  
pp. 105816
Author(s):  
Yu Zhong ◽  
Rodney E. Will ◽  
Tyson E. Ochsner ◽  
Adrian Saenz ◽  
Lan Zhu ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Hun Jun Ha ◽  
Ho Kyung Ha

Erosion of cohesive sediments is a ubiquitous phenomenon in estuarine and intertidal environments. Several methods have been proposed to determine the surface erosion threshold (τc0), which are still debatable because of the numerous and uncertain definitions. Based on erosion microcosm experiments, we have compared three different methods using (1) eroded mass (EM), (2) erosion rate (ER), and (3) suspended sediment concentration (SSC), and suggested a suitable method for revealing the variation of erodibility in intertidal sediments. Erosion experiments using a microcosm system were carried out in the Muuido tidal flat, west coast of South Korea. The mean values of τc0 for three methods were: 0.20 ± 0.08 Pa (EM); 0.18 ± 0.07 Pa (ER); and (3) 0.17 ± 0.09 Pa (SSC). The SSC method yielded the lowest τc0, due to the outflow of suspended sediment from the erosion chamber of the microcosm. This was because SSC gradually decreased with time after depleting the erodible sediment at a given bed shear stress (τb). Therefore, the regression between SSC and applied τb might skew an x-intercept, resulting in the underestimation (or “not-determined”) of τc0. The EM method yielded robust and accurate (within the range of τb step at which erosion begins) results. The EM method represents how the erodible depth thickens as τb increases and therefore seems better suited than the SSC and ER methods for representing depth-limited erosion of cohesive sediments. Furthermore, this study identified the spatiotemporal variations of τc0 by EM method in an intertidal flat. The τc0 in mud flat was about two times higher than that in mixed flat. Compared to the end of tidal emersion, the sediment was 10–40% more erodible at the beginning stage.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3054
Author(s):  
Linh Nguyen Van ◽  
Xuan-Hien Le ◽  
Giang V. Nguyen ◽  
Minho Yeon ◽  
Sungho Jung ◽  
...  

Estimation of sediment transport capacity (STC) plays a crucial role in simulating soil erosion using any physics-based models. In this research, we aim to investigate the pros and cons of six popular STC methods (namely, Shear velocity, Kilinc-Richardson (KR), Effective stream power, Slope and unit discharge, Englund-Hansen (EH), and Unit stream power) for soil erosion/deposition simulation at watershed scales. An in-depth analysis was performed using the selected STC methods integrated into the Grid Surface Subsurface Hydrologic Analysis model for investigating the changes in morphology at spatial-temporal scales at the Cheoncheon watershed, South Korea, over three storm events. Conclusions were drawn as follows. (1) Due to the ability of the KR and EH methods to include an additional parameter (i.e., erodibility coefficient), they outperformed others by producing more accurate simulation results of sediment concentration predictions. The KR method also proved to be superior to the EH method when it showed a more suitable for sediment concentration simulations with a wide range of sediment size and forcing magnitude. (2) We further selected 2 STC methods among the 6 methods to deeply explore the spatial distribution of erosion/deposition. The overall results were more agreeable. For instance, the phenomenon of erosion mainly occurred upstream of watersheds with steep slopes and unbalanced initial sediment concentrations, whereas deposition typically appeared at locations with flat terrain (or along the mainstream). The EH method demonstrated the influence of topography (e.g., gradient slope) on accretionary erosion/deposition results more significantly than the KR method. The obtained results contribute a new understanding of rainfall-sediment-runoff processes and provide fundamental plans for soil conservation in watersheds.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2782
Author(s):  
Yan Li ◽  
Jinliang Zhang ◽  
Haijue Xu ◽  
Yuchuan Bai

Sediment transport in pipes is an effective engineering measure used to reallocate water–sediment resources and is widely used in reservoir flooding and sediment discharging, river dredging, floodplain area deposition, as well as other projects. An experimental investigation of sediment transport in pressurized pipes, with heterogeneous sediment (d50 = 107 μm) of the lower Yellow River as the experimental material, is presented. This study mainly explored the change law of sediment transport and sorting in pressure pipes with an internal diameter of 0.08 m. The experimental results reveal that the presence of sediment significantly changed the distribution of the flow velocity field. At the same flow rate, the velocity of the lower water body with a high sediment concentration decreased, while that of the upper water body increased. At a low water flow rate, the increase in sediment concentration caused an asymmetric distribution of the cross-sectional velocity. The vertical concentration decreased in height, and the obvious stratification of vertical sediment particles was observed. With the increase in the flow rate, the asymmetry of the velocity distribution significantly decreased, the concentration profile tended towards being uniformly distributed along the vertical direction, and the separation effect of the sediment particles weakened.


Sign in / Sign up

Export Citation Format

Share Document