transport rate
Recently Published Documents


TOTAL DOCUMENTS

734
(FIVE YEARS 113)

H-INDEX

50
(FIVE YEARS 4)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0256410
Author(s):  
Yayla Sezginer ◽  
David J. Suggett ◽  
Robert W. Izett ◽  
Philippe D. Tortell

We employed Fast Repetition Rate fluorometry for high-resolution mapping of marine phytoplankton photophysiology and primary photochemistry in the Lancaster Sound and Barrow Strait regions of the Canadian Arctic Archipelago in the summer of 2019. Continuous ship-board analysis of chlorophyll a variable fluorescence demonstrated relatively low photochemical efficiency over most of the cruise-track, with the exception of localized regions within Barrow Strait, where there was increased vertical mixing and proximity to land-based nutrient sources. Along the full transect, we observed strong non-photochemical quenching of chlorophyll fluorescence, with relaxation times longer than the 5-minute period used for dark acclimation. Such long-term quenching effects complicate continuous underway acquisition of fluorescence amplitude-based estimates of photosynthetic electron transport rates, which rely on dark acclimation of samples. As an alternative, we employed a new algorithm to derive electron transport rates based on analysis of fluorescence relaxation kinetics, which does not require dark acclimation. Direct comparison of kinetics- and amplitude-based electron transport rate measurements demonstrated that kinetic-based estimates were, on average, 2-fold higher than amplitude-based values. The magnitude of decoupling between the two electron transport rate estimates increased in association with photophysiological diagnostics of nutrient stress. Discrepancies between electron transport rate estimates likely resulted from the use of different photophysiological parameters to derive the kinetics- and amplitude-based algorithms, and choice of numerical model used to fit variable fluorescence curves and analyze fluorescence kinetics under actinic light. Our results highlight environmental and methodological influences on fluorescence-based photochemistry estimates, and prompt discussion of best-practices for future underway fluorescence-based efforts to monitor phytoplankton photosynthesis.


2021 ◽  
Vol 11 (23) ◽  
pp. 11523
Author(s):  
Khuram Rafique ◽  
Hammad Alotaibi

The study of nanofluids has become a key research area in mathematics, physics, engineering, and materials science. Nowadays, nanofluids are widely used in many industrial applications to improve thermophysical properties such as thermal conductivity, thermal diffusivity, convective heat transfer, and viscosity. This article discusses the effects of heat generation/absorption and chemical reaction on magnetohydrodynamics (MHD) flow of Williamson nanofluid over an inclined stretching surface. The impact of Williamson factor on velocity field is investigated numerically using Keller box analysis (KBA). Suitable similarity transformations are used to recover ordinary differential equations (ODEs) from the boundary flow equations. These ordinary differential equations are addressed numerically. The numerical computations revealed that energy and species exchange decrease with rising values of magnetic field. Moreover, it is found that increasing the chemical reaction parameter increases the Nusselt number and decreases skin friction. Further, the effect of Lewis parameter diminishes energy transport rate. In the same vein, it is also observed that increasing the inclination can enhance skin friction, while the opposite occurred for the energy and species transport rate. As given numerical computations demonstrate, our results are in reasonable agreement with the reported earlier studies.


2021 ◽  
Author(s):  
A. Korrensalo ◽  
I. Mammarella ◽  
P. Alekseychik ◽  
T. Vesala ◽  
E-S. Tuittila

Abstract Purpose Aerenchymous plants are an important control for methane efflux from peatlands to the atmosphere, providing a bypass from the anoxic peat and avoiding oxidation in the oxic peat. We aimed to quantify the drivers of aerenchymous peatland species methane transport and the importance of this process for ecosystem-scale methane efflux. Methods We measured seasonal and interspecies variation in methane transport rate per gram of plant dry mass at a boreal fen and bog, which were upscaled to ecosystem-scale plant methane transport. Results Methane transport rate was better explained by plant species, leaf greenness and area than by environmental variables. Leaves appeared to transport methane even after senescence. Contrary to our expectations, both methane transport rate and the proportion of plant transport were lower in the fen (with greater sedge cover) than in the bog site. At the fen and bog, average methane transport rate was 0.7 and 1.8 mg g−1 d−1, and the proportion of seasonally variable plant transport was 7–41% and 6–90%, respectively. Species-specific differences in methane transport rate were observed at the ecosystem-scale: Scheuchzeria palustris, which accounted for 16% of the aerenchymous leaf area in the fen and displayed the greatest methane transport rate, was responsible for 45% of the ecosystem-scale plant transport. Conclusion Our study showed that plant species influence the magnitude of ecosystem-scale methane emissions through their properties of methane transport. The identification and quantification of these properties could be the pivotal next step in predicting plant methane transport in peatlands.


2021 ◽  
Vol 8 (12) ◽  
pp. 289
Author(s):  
Joseph M. Autry ◽  
Bengt Svensson ◽  
Samuel F. Carlson ◽  
Zhenhui Chen ◽  
Razvan L. Cornea ◽  
...  

We have analyzed the enzymatic activity of the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) from the horse gluteal muscle. Horses are bred for peak athletic performance yet exhibit a high incidence of exertional rhabdomyolysis, with elevated levels of cytosolic Ca2+ proposed as a correlative linkage. We recently reported an improved protocol for isolating SR vesicles from horse muscle; these horse SR vesicles contain an abundant level of SERCA and only trace-levels of sarcolipin (SLN), the inhibitory peptide subunit of SERCA in mammalian fast-twitch skeletal muscle. Here, we report that the in vitro Ca2+ transport rate of horse SR vesicles is 2.3 ± 0.7-fold greater than rabbit SR vesicles, which express close to equimolar levels of SERCA and SLN. This suggests that horse myofibers exhibit an enhanced SR Ca2+ transport rate and increased luminal Ca2+ stores in vivo. Using the densitometry of Coomassie-stained SDS-PAGE gels, we determined that horse SR vesicles express an abundant level of the luminal SR Ca2+ storage protein calsequestrin (CASQ), with a CASQ-to-SERCA ratio about double that in rabbit SR vesicles. Thus, we propose that SR Ca2+ cycling in horse myofibers is enhanced by a reduced SLN inhibition of SERCA and by an abundant expression of CASQ. Together, these results suggest that horse muscle contractility and susceptibility to exertional rhabdomyolysis are promoted by enhanced SR Ca2+ uptake and luminal Ca2+ storage.


Author(s):  
Riu Furutani ◽  
Miho Ohnishi ◽  
Yuki Mori ◽  
Shinya Wada ◽  
Chikahiro Miyake

Author(s):  
Esther P. de Kater ◽  
Aimée Sakes ◽  
Jette Bloemberg ◽  
David J. Jager ◽  
Paul Breedveld

Tissue transport is a challenge during Minimally Invasive Surgery (MIS) with the current suction-based instruments as the increasing length and miniaturisation of the outer diameter requires a higher pressure. Inspired by the wasp ovipositor, a slender and bendable organ through which eggs can be transported, a flexible transport mechanism for tissue was developed that does not require a pressure gradient. The flexible shaft of the mechanism consists of ring magnets and cables that can translate in a similar manner as the valves in the wasp ovipositor. The designed transport mechanism was able to transport 10wt% gelatine tissue phantoms with the shaft in straight and curved positions and in vertical orientation against gravity. The transport rate can be increased by increasing the rotational velocity of the cam. A rotational velocity of 25 RPM resulted in a transport rate of 0.8 mm/s and increasing the rotation velocity of the cam to 80 RPM increased the transport rate to 2.3 mm/s though the stroke efficiency decreased by increasing the rotational velocity of the cam. The transport performance of the flexible transport mechanism is promising. This means of transportation could in the future be an alternative for tissue transport during MIS.


2021 ◽  
Vol 9 (9) ◽  
pp. 936
Author(s):  
Yeulwoo Kim ◽  
Ryan S. Mieras ◽  
Dylan Anderson ◽  
Timu Gallien

SedWaveFoam, an OpenFOAM-based two-phase model that concurrently resolves the free surface wave field, and the bottom boundary layer is used to investigate sediment transport throughout the entire water column. The numerical model was validated with large-scale wave flume data for sheet flow driven by shoaling skewed-asymmetric waves with two different grain sizes. Newly obtained model results were combined with previous nonbreaking and near-breaking wave cases to develop parameterization methods for time-dependent bed shear stress and sediment transport rate under various sediment sizes and wave conditions. Gonzalez-Rodriguez and Madsen (GRM07) and quasi-steady approaches were compared for intra-wave bed shear stress. The results show that in strongly asymmetric flows, considering the separated boundary layer development processes at each half wave-cycle (i.e., GRM07) is essential to accurately estimating bed shear stress and highlights the impact of phase-lag effects on sediment transport rates. The quasi-steady approach underpredicts (∼60%) sediment transport rates, especially for fine grains under large velocity asymmetry. A modified phase-lag parameter, incorporating velocity asymmetry, sediment stirring, and settling processes is proposed to extend the Meyer-Peter and Mueller type power law formula. The extended formula accurately estimated the enhanced net onshore sediment transport rate observed under skewed-asymmetric wave conditions.


Sign in / Sign up

Export Citation Format

Share Document