scholarly journals A RISK-INFORMED APPROACH TO COASTAL ZONE MANAGEMENT

2011 ◽  
Vol 1 (32) ◽  
pp. 8 ◽  
Author(s):  
Ruben Jongejan ◽  
Roshanka Ranasinghe ◽  
Han Vrijling

Economic and population growth have led to an unprecedented increase in the value at risk in coastal zones over the last century. To avoid excessive future losses, particularly in the light of projected climate change impacts, coastal zone managers have various instruments at their disposal. These primarily concern land-use planning (establishing buffer zones) and engineering solutions (beach nourishment and coastal protection). In this paper, we focus on risk mitigation through the implementation of buffer zones (setback lines). Foregoing land-use opportunities in coastal regions and protecting coasts is costly, but so is damage caused by inundation and storm erosion. Defining appropriate setback lines for land-use planning purposes is a balancing act. It is however unclear what level of protection is facilitated by current approaches for defining setback lines, and whether this is, at least from an economic perspective, sufficient. In this paper, we present an economic model to determine which setback lines would be optimal from an economic perspective. The results provide a useful reference point in the political debate about the acceptability of risk in coastal zones. The main conclusions are (i) that it is useful to define setback lines on the basis of their exceedance probabilities, (ii) that the exceedance probability of an economically efficient setback line will typically be in the order of magnitude of 1/100 per year, (iii) that it is important to distinguish between situations in which morphological conditions are stationary and non-stationary, and (iv) that long-term uncertainties (e.g. due to climate change) influence the exceedance probability of efficient setback lines but only to a limited extent.

2011 ◽  
pp. 349-363 ◽  
Author(s):  
Harry Storch ◽  
Nigel Downes ◽  
Lutz Katzschner ◽  
Nguyen Xuan Thinh

2020 ◽  
Author(s):  
Francesca Moschini ◽  
Iacopo Federico Ferrario ◽  
Barbara Hofmann

<p>Quantifying how land-use change affects hydrological components is a challenge in hydrological science. It is not yet clear how changes in land use relate to runoff extremes and why some catchments are more sensitive to land-use change than others. Identifying which areas are hydrologically more sensitive to land-use change can lead to better land-use planning, reduction of the impacts of extreme rainfall events and extended dry periods. In this study we aim to quantify how land-use change and climate change are affecting the hydrological response of  Vietnam’s basins. Over the past decades the country’s land use has shifted from forest to agriculture, with very high production of rice, coffee, tea, pepper and sugar cane.</p><p>We combine the historical, the Intergovernmental Panel on Climate Change’s (IPCC) Representative Concentration Pathway (RCP) RCP4.5 and RCP8.5 climate change scenarios developed for Vietnam, with two different land cover maps (from the years 1992 and 2017). The combined and separate effect of land use and climate change are assessed and the most sensitive to change areas are identified. The Variable infiltration Capacity (VIC) surface water and energy balance model applied here is a grid-based model that calculates evapotranspiration, runoff, base flow, soil moisture and other hydrological fluxes. Surface heterogeneity within VIC is represented by a tiled approach, whereby the surface of each grid-box comprises fractions of the different surface types. For each surface type of the grid-box, the energy and water balances are solved, and a weighted average is calculated from the individual surface fluxes for each grid-box. Hydrological fluxes were compared for each grid cell and basin to analyse the degree of difference between the scenarios.</p><p>Significant changes in future hydrologic fluxes arise under both climate change scenarios pointing towards a severe increase in hydrological extremes. The changes in all the examined hydrological components are greater in the combined land-use and climate change experiments.</p>


Sign in / Sign up

Export Citation Format

Share Document