Modelling the impacts of climate change and land-use change on the hydrology of Vietnam’s river basins

Author(s):  
Francesca Moschini ◽  
Iacopo Federico Ferrario ◽  
Barbara Hofmann

<p>Quantifying how land-use change affects hydrological components is a challenge in hydrological science. It is not yet clear how changes in land use relate to runoff extremes and why some catchments are more sensitive to land-use change than others. Identifying which areas are hydrologically more sensitive to land-use change can lead to better land-use planning, reduction of the impacts of extreme rainfall events and extended dry periods. In this study we aim to quantify how land-use change and climate change are affecting the hydrological response of  Vietnam’s basins. Over the past decades the country’s land use has shifted from forest to agriculture, with very high production of rice, coffee, tea, pepper and sugar cane.</p><p>We combine the historical, the Intergovernmental Panel on Climate Change’s (IPCC) Representative Concentration Pathway (RCP) RCP4.5 and RCP8.5 climate change scenarios developed for Vietnam, with two different land cover maps (from the years 1992 and 2017). The combined and separate effect of land use and climate change are assessed and the most sensitive to change areas are identified. The Variable infiltration Capacity (VIC) surface water and energy balance model applied here is a grid-based model that calculates evapotranspiration, runoff, base flow, soil moisture and other hydrological fluxes. Surface heterogeneity within VIC is represented by a tiled approach, whereby the surface of each grid-box comprises fractions of the different surface types. For each surface type of the grid-box, the energy and water balances are solved, and a weighted average is calculated from the individual surface fluxes for each grid-box. Hydrological fluxes were compared for each grid cell and basin to analyse the degree of difference between the scenarios.</p><p>Significant changes in future hydrologic fluxes arise under both climate change scenarios pointing towards a severe increase in hydrological extremes. The changes in all the examined hydrological components are greater in the combined land-use and climate change experiments.</p>

2020 ◽  
Vol 51 (5) ◽  
pp. 976-993
Author(s):  
Yuhui Yan ◽  
Baolin Xue ◽  
Yinglan A ◽  
Wenchao Sun ◽  
Hanwen Zhang

Abstract Quantification of runoff change is vital for water resources management, especially in arid or semiarid areas. This study used the Soil and Water Assessment Tool (SWAT) distributed hydrological model to simulate runoff in the upper reaches of the Hailar Basin (NE China) and to analyze quantitatively the impacts of climate change and land-use change on runoff by setting different scenarios. Two periods, i.e., the reference period (before 1988) and the interference period (after 1988), were identified based on long-term runoff datasets. In comparison with the reference period, the contribution rates of both climate change and land-use change to runoff change in the Hailar Basin during the interference period were 83.58% and 16.42%, respectively. The simulation analysis of climate change scenarios with differential precipitation and temperature changes suggested that runoff changes are correlated positively with precipitation change and that the impact of precipitation change on runoff is stronger than that of temperature. Under different economic development scenarios adopted, land use was predicted to have a considerable impact on runoff. The expansion of forests within the basin might induce decreased runoff owing to enhanced evapotranspiration.


2014 ◽  
Vol 7 (5) ◽  
pp. 2359-2391 ◽  
Author(s):  
E. D. Keller ◽  
W. T. Baisden ◽  
L. Timar ◽  
B. Mullan ◽  
A. Clark

Abstract. We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand models to simulate pastoral agriculture and to make land-use change, intensification of agricultural activity and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1–2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report also show national increases of 1–2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3 and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasise that CO2 fertilisation and N-cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of decoupled land-use change scenarios: the Biome-BGC data products at a national or regional level can be re-sampled quickly and cost-effectively for specific land-use change scenarios and future projections.


2007 ◽  
Vol 4 (6) ◽  
pp. 4265-4295 ◽  
Author(s):  
J. Dams ◽  
S. T. Woldeamlak ◽  
O. Batelaan

Abstract. Land-use change and climate change, along with groundwater pumping are frequently indicated to be the main human-induced factors influencing the groundwater system. Up till now, research has mainly been focusing on the effect of the water quality of these human-induced changes on the groundwater system, often neglecting changes in quantity. The focus in this study is on the impact of land-use changes in the near future, from 2000 until 2020, on the groundwater quantity and the general hydrologic balance of a sub-catchment of the Kleine Nete, Belgium. This study tests a new methodology which involves coupling a land-use change model with a water balance model and a groundwater model. The future land-use is modelled with the CLUE-S model. Four scenarios (A1, A2, B1 and B2) based on the Special Report on Emission Scenarios (SRES) are used for the land-use modelling. Water balance components, groundwater level and baseflow are simulated using the WetSpass model in conjunction with a MODFLOW groundwater model. Results show that the average recharge slowly decreases for all scenarios, the decreases are 2.9, 1.6, 1.8 and 0.8% for respectively scenario A1, A2, B1 and B2. The predicted reduction in recharge results in a small decrease of the average groundwater level, ranging from 2.5 cm for scenario A1 to 0.9 cm for scenario B2, and a reduction of the total baseflow with maximum 2.3% and minimum 0.7% respectively for scenario A1 and B2. Although these average values do not indicate significant changes for the groundwater system, spatial analysis of the changes shows the changes are concentrated in the neighbourhood of the major cities in the study areas. It is therefore important for spatial managers to take the groundwater system into account for reducing the negative impacts of land-use and climate change as much as possible.


2014 ◽  
Vol 7 (3) ◽  
pp. 3307-3365
Author(s):  
E. D. Keller ◽  
W. T. Baisden ◽  
L. Timar ◽  
B. Mullan ◽  
A. Clark

Abstract. We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand (LURNZ) models to simulate pastoral agriculture and to make land-use change, intensification and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1–2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report (AR4) also show national increases of 1–2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3% and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasize that CO2 fertilisation and N cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of Decoupled Land-Use Change Scenarios (DLUCS): the Biome-BGC data products at a national or regional level can be re-sampled quickly and cost-effectively for specific land-use change scenarios and future projections.


2015 ◽  
Vol 47 (2) ◽  
pp. 356-372 ◽  
Author(s):  
Renhua Yan ◽  
Jiacong Huang ◽  
Yan Wang ◽  
Junfeng Gao ◽  
Lingyan Qi

The response of hydrologic circulation to climate and land use changes is important in studying the historical, present, and future evolution of aquatic ecosystems. In this study, the Coupled Model Inter-comparison Project Phase 5 multi-model ensemble and a raster-based Xin'anjiang model were applied to simulate future streamflows under three climate change scenarios and two land use/cover change conditions in the Xinjiang Basin, China, and to investigate the combined effect of future climate and land use/cover changes on streamflow. Simulation results indicated that future climate and land use/cover changes affect not only the seasonal distributions of streamflow, but also the annual amounts of streamflow. For each climate scenario, the average monthly streamflows increase by more than 4% in autumn and early winter, while decreasing by more than −26% in spring and summer for the 21st century. The annual streamflows present a clear decreasing trend of −27%. Compared with land use/cover change, climate change affects streamflow change more. Land use/cover change can mitigate the climate change effect from January to August and enhance it in other months. These results can provide scientific information for regional water resources management and land use planning in the future.


2018 ◽  
Vol 22 (2) ◽  
pp. 1411-1435 ◽  
Author(s):  
Gina Tsarouchi ◽  
Wouter Buytaert

Abstract. Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000–2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000–2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030–2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of climate change and land-use change from a water demand perspective. We conclude that future water demands in the Upper Ganges region for winter months may not be met.


Sign in / Sign up

Export Citation Format

Share Document