scholarly journals TEST OF EMPIRICAL SEDIMENT TRANSPORT RELATIONS AGAINST EXPERIMENTAL SWASH DATA UNDER THE NON-CAPACITY MODELING FRAMEWORK

Author(s):  
Peng Hu ◽  
Liming Tan ◽  
Jiafeng Xie ◽  
Zhiguo He

Swash sediment transport and beach deformation has received great attention in the past two decades. Quantification of swash-induced sediment transport rate is of vital importance for accurate prediction of beach deformation in the swash zone. Two empirical parameters are involved in this quantification, empirical relations for sediment transport capacity and the bed shear stress that may be used in the former. Since the swash zone is highly unsteady, of short cross-shore distance, sediment transport in this zone may be of high possibility to be lag of the flow variation. Thus we have firstly developed a non-capacity sediment transport model for the swash zone. This model appreciates the fact that the actual sediment transport rate may not be necessarily equal to the sediment transport capacity of the flow. In contrast to traditional capacity models that calculate sediment transport rate using directly empirical relations (Hu et al. 2015), the non-capacity model uses the advection-diffusion equation to calculate depth-averaged sediment concentration firstly, and afterwards compute sediment transport rate as flow depth*velocity*concentration. We have also noted that some empirical relations for sediment transport capacity may predict physically unrealistic high values of sediment concentration in the swash zone. This is attributed to the vanishing water depth in the swash zone, whereas existing empirical relations are developed for relatively large water depths (Hu et al. 2015; Li et al. 2017).

2012 ◽  
Vol 697 ◽  
pp. 115-149 ◽  
Author(s):  
Paolo Blondeaux ◽  
Giovanna Vittori ◽  
Antonello Bruschi ◽  
Francesco Lalli ◽  
Valeria Pesarino

AbstractThe flow and sediment transport in the boundary layer at the sea bottom due to the passage of surface waves are determined by considering small values of the wave steepness and of the ratio between the thickness of the boundary layer and the local water depth. Both the velocity field and the sediment transport rate are determined up to the second order of approximation thus evaluating both the steady streaming and the net (wave-averaged) flux of sediment induced by nonlinear effects. The flow regime is assumed to be turbulent and a two-equation turbulence model is used to close the problem. The bed load is evaluated by means of an empirical relationship as function of the bed shear stress. The suspended load is determined by computing the sediment flux, once the sediment concentration is determined by solving an appropriate advection–diffusion equation. The decay of the wave amplitude, which is due to the energy dissipation taking place in the boundary layer, is taken into account. The steady streaming and the sediment transport rate at the bottom of sea waves turn out to be different from those which are observed in a wave tunnel (U-tube), because of the dependence on the streamwise coordinate of the former flow. In particular, in the range of the parameters presently investigated, the sediment transport rate at the bottom of sea waves is found to be always onshore directed while, in a water tunnel (U-tube), the sediment transport rate can be onshore or offshore directed.


1990 ◽  
pp. 295-296
Author(s):  
Shunsuke IKEDA ◽  
Makoto IFUKU ◽  
Tadao KAKINUMA ◽  
Hiromitsu GOTOH

1990 ◽  
pp. 293-294
Author(s):  
Hitoshi TANAKA ◽  
Makoto IFUKU ◽  
Tadao KAKINUMA ◽  
Hiromitsu GOTOH

Author(s):  
Yuan Li ◽  
Chi Zhang

Submerged Artificial sandBars (SAB) are usually implemented on the lower shoreface to protect berms or dunes during storm surges. The lee-effect of SAB is due to its ability in triggering large wave breaking, so that sediment concentration in water column and sediment transport capacity will decrease in the covered areas. Previous studies analyzed the lee-effect and topography evolution of SAB, however the morphological coupling of SAB and natural profiles is seldom referred. In this study, the morphological coupling between SAB located on the lower shoreface and the berm in upper beach is investigated in a well-controlled physical experiment.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/KsOK30StZZQ


Sign in / Sign up

Export Citation Format

Share Document