Suspended Sediment Concentration
Recently Published Documents





2021 ◽  
Vol 9 (11) ◽  
pp. 1300
Troels Aagaard ◽  
Joost Brinkkemper ◽  
Drude F. Christensen ◽  
Michael G. Hughes ◽  
Gerben Ruessink

The existence of sandy beaches relies on the onshore transport of sand by waves during post-storm conditions. Most operational sediment transport models employ wave-averaged terms, and/or the instantaneous cross-shore velocity signal, but the models often fail in predictions of the onshore-directed transport rates. An important reason is that they rarely consider the phase relationships between wave orbital velocity and the suspended sediment concentration. This relationship depends on the intra-wave structure of the bed shear stress and hence on the timing and magnitude of turbulence production in the water column. This paper provides an up-to-date review of recent experimental advances on intra-wave turbulence characteristics, sediment mobilization, and suspended sediment transport in laboratory and natural surf zones. Experimental results generally show that peaks in the suspended sediment concentration are shifted forward on the wave phase with increasing turbulence levels and instantaneous near-bed sediment concentration scales with instantaneous turbulent kinetic energy. The magnitude and intra-wave phase of turbulence production and sediment concentration are shown to depend on wave (breaker) type, seabed configuration, and relative wave height, which opens up the possibility of more robust predictions of transport rates for different wave and beach conditions.

2021 ◽  
Vol 7 (3) ◽  
pp. 45-55
Virendra Bahadur Singh ◽  
AL. Ramanathan ◽  
Pramod Kumar

This review manuscript addresses hydro-meteorological correlations of various glaciers situated in the Himalayan region. Meteorological parameters influence the discharge pattern of the glacier. A strong correlation has been observed between discharge and air temperature of the studied Himalayan glaciers. Whereas, other meteorological parameters such as wind speed and wind direction etc. were not significantly correlated with the meltwater runoff of different glaciers in this region. In general, variability (Cv) in discharge from the various Himalayan glaciers such as Chhota Shigri and Gangotri glaciers follow the variability (Cv) in the temperature of these glaciers. Maximum variability (Cv) in meltwater runoff from the Chhota Shigri glacier has been reported in the month of September, which might be due to the fast decline in stream runoff and air temperature of the study area during the month of September. A strong relationship has been observed between suspended sediment concentration and temperature of the majority of studied Himalayan glaciers. Such type of result shows that the suspended sediment concentration in the glacial meltwater has increased with rising air temperature in this region.

2021 ◽  
Vol 11 (1) ◽  
Shan-Shan Wang ◽  
Zhan-Bin Li ◽  
Le-Tao Zhang ◽  
Bo Ma

AbstractThe Loess Plateau in China has suffered severe soil erosion. To control soil erosion, extensive conservation measures aimed at redistributing rainfall, hindering flow velocity and intercepting sediment were implemented on the Loess Plateau. To accurately evaluate the combined effect of conservation measures in the Chabagou watershed, this study classified intra-event-based floods into four regimes via cluster and discriminant analyses. Regime A was characterized by short flood duration and low erosive energy, regime B was characterized by short flood duration and high erosive energy, regime C was characterized by long flood duration and low erosive energy, and regime D was characterized by long flood duration and high erosive energy. The results indicated that peak discharge (qp), runoff depth (H), mean discharge (qm), and runoff erosion power (E) decreased by 75.2%, 56.0%, 68.0% and 89.2%, respectively, in response to conservation measures. Moreover, area-specific sediment yield (SSY), average suspended sediment concentration (SCE), and maximum suspended sediment concentration (MSCE) decreased by 69.2%, 33.3% and 11.9%, respectively, due to conservation measures. The nonlinear regression analysis revealed a power function relationship between SSY and E in both the baseline (1961–1969) and measurement period (1971–1990) in all regimes. Conservation measures reduced sediment yield by not only reducing the runoff amount and soil erosion energy but also transforming the flood regime, for example, transforming a high-sediment-yield regime into a low-sediment-yield regime. Moreover, conservation measures altered the SSY-E relationship in regime A, whereas no obvious difference in regime B or C/D was observed between the measurement period and the baseline period. This study provides a better understanding of the mechanism of runoff regulation and the sediment yield reduction under comprehensive conservation measures in a small watershed on the Chinese Loess Plateau.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Zelalem R. Womber ◽  
Fasikaw A. Zimale ◽  
Mebrahtom G. Kebedew ◽  
Bekalu W. Asers ◽  
Nikole M. DeLuca ◽  

Discharge from basins joining a lake is the main factor determining the lake volume and sediment inflow to the lake. Suspended sediment is an important parameter for describing the water quality of aquatic ecosystems. Lake Tana is an important and the largest lake in Ethiopia for the local ecological system. However, environmental change and anthropogenic activities in the area threaten its water quality. The conventional methods of suspended sediment concentration (SSC) observation are unable to determine and compare spatial and temporal SSC patterns for the lake over a period of years. Remote sensing methods have made it possible to map SSC. The objective of this study is to characterize the spatial and temporal distribution of suspended sediment of Lake Tana using in situ measurement and remote sensing applications and specifically to develop a relationship between in situ and remote sensing observation to retrieve suspended sediment concentration and map the spatal distribution of SSC. This study used MODIS-Terra and in situ data to characterize the spatial and temporal distribution of SSC in the rainy season. Four sampling campaigns (20 samples per campaign) were carried out on Lake Tana, and the first three sampled campaigns on May 11–13, 2018, June 08–10, 2018, and July 15–17, 2018, were used for calibration of regression models. MODIS-Terra reflectance in NIR was found best related to in situ water quality data and varies linearly with SSC (r2 = 0.81) and turbidity (r2 = 0.85). Secchi disc depth (SDD) found the best fit for a power relation with NIR band reflectance (r2 = 0.74). The MODIS-Terra reflectance in red was found to be poorly related to in situ measurements. The relation in NIR reflectance was validated using the LOOCV (leave-one-out-cross-validation) technique and the fourth sampled data set collected on August 12–14, 2018. Developed models are validated with RMSE of 42.96 mg/l, 14.6 NTU, and 0.17 m, ARE of 23.3%, 27.6%, and 12.4%, and RRMSE of 25.1%, 44.5%, and 29.6% for SSC, turbidity, and SDD, respectively, using LOOCV. The equation was also validated using August 2018 collected data sets with RMSE of 87.6 mg/l, 11.7 NTU, 0.08 m, ARE of 20.8%, 25.9%, and 28.8%, and RRMSE of 17.8%, 20.5%, and 27.9% for SSC, turbidity, and SDD, respectively. Applying the developed regression model, a 10-year time series of SSC from 2008–2017 for May-August was estimated and the trend was tested using the Mann–Kendall trend test. It was found that an increasing trend was observed from the period 2008 to 2017. The result shows that satellite data like the MODIS-Terra imagery could be used to monitor and obtain past records of SSC with the developed equation. The increasing SSC can be reduced by implementing selected management practices in the surrounding watersheds of the lake to reduce nutrient and sediment inflow.

Sign in / Sign up

Export Citation Format

Share Document