empirical relations
Recently Published Documents


TOTAL DOCUMENTS

523
(FIVE YEARS 101)

H-INDEX

44
(FIVE YEARS 4)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bishwajeet Choubey ◽  
Virendra Kumar ◽  
Sekhar Chandra Dutta ◽  
Saurav Kumar Saikia

PurposeThe purpose of the paper is to mathematically model and predict the characteristics of thermo-mechanically treated (TMT) rebar when subjected to elevated temperatures.Design/methodology/approachData were collected from a few selected studies for developing the constitutive relations. Using the exposed temperature and the duration of heating as independent variables, the empirical relations were developed for determining the changes in mechanical properties of TMT rebars at elevated temperatures.FindingsRecrystallization of TMT rebar crystals took place around 500 °C, which led to a decrease in the dislocation density along with the increase of large-sized grains, resulting in the degradation of strength. Up to a temperature range of 500 °C, the normalized fracture strength was higher, while the normalized fracture strain is not so high. This indicated a failure of brittle nature.Originality/valueThis is an original work done by others as a study to theoretically predict the mechanical behavior of TMT rebars when exposed to elevated temperature.HighlightsThe TMT bars showed brittleness characteristics up to 500 °C and showed ductility characteristics after that on account of its recrystallization and extensive tempering of the outer martensitic rim around that temperature.The comparison between the super ductile (SD) TMT and the regular TMT exhibit shows that the SD-TMT bars were about 1.5 times more ductile than the normal ones.


Author(s):  
M. Gordino ◽  
F. Auchère ◽  
J.-C. Vial ◽  
K. Bocchialini ◽  
D. M. Hassler ◽  
...  
Keyword(s):  

Diogenes ◽  
2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Pantelej Kondratjuk ◽  
◽  
◽  

Social Philosophy is a discipline that deals with social behaviour and interprets society and its institutions according to ethical values instead of empirical relations. Bearing this in mind, I decided to explore the phenomenon of the crisis regarding the modern ethos of postmodern culture in the context of the history of classical philosophy. I have done so by relating it to new theoretical and epistemological frameworks of social, philosophical ontology on the one hand, and to the attempt to find an appropriate linguistic paradigm though philosophical semantics on the other hand that would have the potential to create an alternative ethical category. The ultimate goal is to show that philosophy becomes philosophy through the human being himself.


2021 ◽  
Vol 15 (12) ◽  
pp. 5387-5407
Author(s):  
Elena Zakharova ◽  
Svetlana Agafonova ◽  
Claude Duguay ◽  
Natalia Frolova ◽  
Alexei Kouraev

Abstract. River ice is a key component of the cryosphere. Satellite monitoring of river ice is a rapidly developing area of scientific enquiry, which has wide-ranging implications for climate, environmental and socioeconomic applications. Spaceborne radar altimetry is widely used for monitoring river water regimes; however, its potential for the observation of river ice processes and properties has not been demonstrated yet. Using Ku-band backscatter measurements from the Jason-2 and Jason-3 satellite missions (2008–2019), we demonstrate the potential of radar altimetry for the retrieval of river ice phenology dates and ice thickness for the first time. The altimetric measurements were determined to be sensitive enough to detect the first appearance of ice and the beginning of thermal breakup on the lower Ob River (Western Siberia). The uncertainties in the retrieval of ice event timing were within the 10 d repeat cycle of Jason-2 and Jason-3 in 88 %–90 % of the cases analysed. The uncertainties in the river ice thickness retrievals made via empirical relations between the satellite backscatter measurements and in situ observations, expressed as the root mean square error (RMSE), were of 0.07–0.18 m. A novel application of radar altimetry is the prediction of ice bridge road operations, which is demonstrated herein. We established that the dates of ferry closing and ice road opening and closing in the city of Salekhard can be predicted with an accuracy (expressed as RMSE) of 3–5 d.


2021 ◽  
Vol 922 (2) ◽  
pp. 229
Author(s):  
Ashley Chontos ◽  
Daniel Huber ◽  
Travis A. Berger ◽  
Hans Kjeldsen ◽  
Aldo M. Serenelli ◽  
...  

Abstract Asteroseismology of bright stars has become increasingly important as a method to determine the fundamental properties (in particular ages) of stars. The Kepler Space Telescope initiated a revolution by detecting oscillations in more than 500 main-sequence and subgiant stars. However, most Kepler stars are faint and therefore have limited constraints from independent methods such as long-baseline interferometry. Here we present the discovery of solar-like oscillations in α Men A, a naked-eye (V = 5.1) G7 dwarf in TESS’s southern continuous viewing zone. Using a combination of astrometry, spectroscopy, and asteroseismology, we precisely characterize the solar analog α Men A (T eff = 5569 ± 62 K, R ⋆ = 0.960 ± 0.016 R ⊙, M ⋆ = 0.964 ± 0.045 M ⊙). To characterize the fully convective M dwarf companion, we derive empirical relations to estimate mass, radius, and temperature given the absolute Gaia magnitude and metallicity, yielding M ⋆ = 0.169 ± 0.006 M ⊙, R ⋆ = 0.19 ± 0.01 R ⊙, and T eff = 3054 ± 44 K. Our asteroseismic age of 6.2 ± 1.4 (stat) ± 0.6 (sys) Gyr for the primary places α Men B within a small population of M dwarfs with precisely measured ages. We combined multiple ground-based spectroscopy surveys to reveal an activity cycle of P = 13.1 ± 1.1 yr for α Men A, a period similar to that observed in the Sun. We used different gyrochronology models with the asteroseismic age to estimate a rotation period of ∼30 days for the primary. Alpha Men A is now the closest (d = 10 pc) solar analog with a precise asteroseismic age from space-based photometry, making it a prime target for next-generation direct-imaging missions searching for true Earth analogs.


Author(s):  
Ajeet Singh ◽  
A Shukla ◽  
M K Gaidarov

Abstract In the present work, we have studied the alpha-like clusters (8Be, 12C, 16O, 20Ne, and 24Mg) decay half-lives in the trans-tin region for (106-116Xe, 108-122Ba, 114-124Ce, and 118-128Nd) and in transition metal region for (156-166Hf, 158-172W, 160-174Os, 166-180Pt, and 170-182Hg) nuclei. These half-lives have been calculated using the shape parametrization model of cluster decay in conjunction with the relativistic mean-field (RMF) model with the NL3* parameter set. Thus calculated cluster decay half-lives are also compared with the half-lives computed using the latest empirical relations, namely Universal decay law (UDL) and the Scaling Law given by Horoi et al.. From the calculated results, it has been observed that in the trans-tin region, the minimum cluster decay half-lives are found at nearly doubly magic or doubly magic daughter 100Sn (Nd = 50, Nd is the neutron number of the daughter nuclei) shell effect at Nd = 50 and in transition metal region, half-lives are minimum at Nd = 82, which is a magic number. Further, the Geiger-Nuttal plots of half-lives showing Q dependence for different alpha-like clusters from various CR emitters that have been plotted are found to vary linearly.


Author(s):  
Md Mehedi Hasan ◽  
Theocharis Baxevanis

Shape Memory Alloy (SMA)-actuators are efficient, simple, and robust alternatives to conventional actuators when a small volume and/or large force and stroke are required. The analysis of their failure response is critical for their design in order to achieve optimum functionality and performance. Here, (i) the existing knowledge base on the fatigue and overload fracture response of SMAs under actuation loading is reviewed regarding the failure micromechanisms, empirical relations for actuation fatigue life prediction, experimental measurements of fracture toughness and fatigue crack growth rates, and numerical investigations of toughness properties and (ii) future developments required to expand the acquired knowledge, enhance the current understanding, and ultimately enable commercial applications of SMA-actuators are discussed.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7369
Author(s):  
Yenca Migoya-Orué ◽  
Katy Alazo-Cuartas ◽  
Anton Kashcheyev ◽  
Christine Amory-Mazaudier ◽  
Sandro Radicella ◽  
...  

The thickness parameters that most empirical models use are generally defined by empirical relations related to ionogram characteristics. This is the case with the NeQuick model that uses an inflection point below the F2 layer peak to define a thickness parameter of the F2 bottomside of the electron density profile, which is named B2. This study is focused on the effects of geomagnetic storms on the thickness parameter B2. We selected three equinoctial storms, namely 17 March 2013, 2 October 2013 and 17 March 2015. To investigate the behavior of the B2 parameter before, during and after those events, we have analyzed variations of GNSS derived vertical TEC (VTEC) and maximum electron density (NmF2) obtained from manually scaled ionograms over 20 stations at middle and low latitudes of Asian, Euro-African and American longitude sectors. The results show two main kinds of responses after the onset of the geomagnetic events: a peak of B2 parameter prior to the increase in VTEC and NmF2 (in ~60% of the cases) and a fluctuation in B2 associated with a decrease in VTEC and NmF2 (~25% of the cases). The behavior observed has been related to the dominant factor acting after the CME shocks associated with positive and negative storm effects. Investigation into the time delay of the different measurements according to location showed that B2 reacts before NmF2 and VTEC after the onset of the storms in all the cases. The sensitivity shown by B2 during the studied storms might indicate that experimentally derived thickness parameter B2 could be incorporated into the empirical models such as NeQuick in order to adapt them to storm situations that represent extreme cases of ionospheric weather-like conditions.


2021 ◽  
Vol 13 (21) ◽  
pp. 11673
Author(s):  
Shuaikang Zhao ◽  
Ziwei Liu ◽  
Xiaoran Wei ◽  
Bo Li ◽  
Yefei Bai

The Holland (2010) parametric wind model has been extensively utilized in tropical cyclone and storm surge-related coastal hazard mitigation and management studies. The only remaining input parameter, the radius of maximum wind speed (Rm), is usually generated by previously proposed empirical relations which are, however, sensitivity to study areas in producing better performed numerical results. In order to acquire optimal Rm formulations over the region of Zhoushan Archipelago, East China Sea, 16 empirical relations were compiled into the Holland (2010) model to produce time series of the pressure, wind speed, and wind direction in comparison to observational records taken at three stations during the tropical cyclone events of Ampil and Rumbai. Their respective agreements were evaluated by error metrices including the root mean square error, correlation coefficient, mean bias error, and scatter index, whilst the overall performances of the 16 formulations were ranked according to a proposed comprehensive error. In the following order, the Rm formulations of Lu (2012), Zhou (2005), Kato (2018), and Jiang (2008) ranked the best for both events in terms of their minimum comprehensive errors; however, recommendations on the application of specific empirical formulations for the region of Zhoushan Archipelago are also provided herein from the perspective of conservation and accuracy.


Sign in / Sign up

Export Citation Format

Share Document