Satellite Image Compression Using Dual Tree Complex wavelet Transform

2014 ◽  
Vol 9 (3) ◽  
pp. 29-34 ◽  
Author(s):  
P. R. Burad ◽  
◽  
R. K. Agrawal
2017 ◽  
Vol 6 (4) ◽  
pp. 334-336
Author(s):  
C. Periyasamy

Drawback of losing high frequency components suffers the resolution enhancement. In this project, wavelet domain based image resolution enhancement technique using Dual Tree Complex Wavelet Transform (DT-CWT) is proposed for resolution enhancement of the satellite images. Input images are decomposed by using DT-CWT in this proposed enhancement technique. Inverse DT-CWT is used to generate a new resolution enhanced image from the interpolation of high-frequency sub band images and the input low-resolution image. Intermediate stage has been proposed for estimating the high frequency sub bands to achieve a sharper image. It has been tested on benchmark images from public database. Peak Signal-To-Noise Ratio (PSNR) and visual results show the dominance of the proposed technique over the predictable and state-of-art image resolution enhancement techniques.


For the past two decades, wavelet based image compression algorithms for Wireless Sensor Network (WSN) has gained broad attention than that of the spatial based image compression algorithms. In that, Dual Tree Complex Wavelet Transforms (DTCWT) has provided better results in terms of image quality and high compression rate. However, the selection of DTCWT based image compressions for various WSN based applications is not practically suitable, due to the major limitations of WSN such as, low bandwidth, low energy consumption and storage space. Therefore, an attempt has been made in this paper to develop image compression through simulation by considering the modified block based pass parallel Set Partitioning In Hierarchical Trees (SPIHT) with Double Density Dual Tree Complex Wavelet Transform (DDDTCWT) for compressing the WSN based images. In addition, bivariate shrink method is also adopted with the DDDTCWT to obtain better image quality within less computation time. It is observed through simulation results that above mentioned proposed technique provides better performance than that of existing compression technique


Sign in / Sign up

Export Citation Format

Share Document