oyster bay
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
pp. 59-73
Author(s):  
Michael Patrick Cullinane
Keyword(s):  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4261 ◽  
Author(s):  
J. Emerson Heare ◽  
Samuel J. White ◽  
Brent Vadopalas ◽  
Steven B. Roberts

Olympia oysters are the only oyster native to the west coast of North America. The population within Puget Sound, WA has been decreasing significantly since the early 1900’s. Current restoration efforts are focused on supplementing local populations with hatchery bred oysters. A recent study by Heare et al. (2017) has shown differences in stress response in oysters from different locations in Puget Sound however, nothing is known about the underlying mechanisms associated with these observed differences. In this study, expression of genes associated with growth, immune function, and gene regulatory activity in oysters from Oyster Bay, Dabob Bay, and Fidalgo Bay were characterized following temperature and mechanical stress. We found that heat stress and mechanical stress significantly changed expression in molecular regulatory activity and immune response, respectively. We also found that oysters from Oyster Bay had the most dramatic response to stress at the gene expression level. These data provide important baseline information on the physiological response ofOstrea lurida to stress and provide clues to underlying performance differences in the three populations examined.


Author(s):  
J. Emerson Heare ◽  
Brady Blake ◽  
Jonathan P. Davis ◽  
Brent Vadopalas ◽  
Steven B. Roberts

For long-term persistence of species, population structure is important. Traits that hold adaptive advantage such as reproductive timing and stress resilience may differ among locales. Knowledge and consideration of these traits should be integrated into conservation efforts. To test for adaptive differences between Olympia oyster populations a reciprocal transplant experiment was carried out monitoring survival, growth, and reproduction using three established populations of Ostrea lurida within Puget Sound, Washington. Performance differed for each population. Ostrea lurida from Dabob Bay had higher survival at all sites but lower reproductive activity and growth. Oysters from Oyster Bay demonstrated greater proportion of brooding females at a majority of sites with moderate growth and survival. Together these data suggest the existence of O. lurida population structure within Puget Sound and provide information on how broodstock should be selected for restoration purposes.


2017 ◽  
Author(s):  
J. Emerson Heare ◽  
Samuel J. White ◽  
Brent Vadopalas ◽  
Steven B. Roberts

Olympia oysters are the only oyster native to the west coast of North America. The population within Puget Sound, WA has been decreasing significantly since the early 1900’s. Current restoration efforts are focused on supplementing local populations with hatchery bred oysters. A recent study by Heare et al. (2015) has shown differences in stress response in oysters from different locations in Puget Sound however, nothing is known about the underlying mechanisms associated with these observed differences. In this study, expression of genes associated with growth, immune function, and gene regulatory activity in oysters from Oyster Bay, Dabob Bay, and Fidalgo Bay were characterized following temperature and mechanical stress. We found that heat stress and mechanical stress significantly changed expression in molecular regulatory activity and immune response, respectively. We also found that oysters from Oyster Bay had the most dramatic response to stress at the gene expression level. These data provide important baseline information on the physiological response of Ostrea lurida to stress and provide clues to underlying performance differences in the three populations examined.


2017 ◽  
Author(s):  
J. Emerson Heare ◽  
Brady Blake ◽  
Jonathan P. Davis ◽  
Brent Vadopalas ◽  
Steven B. Roberts

For long-term persistence of species, population structure is important. Traits that hold adaptive advantage such as reproductive timing and stress resilience may differ among locales. Knowledge and consideration of these traits should be integrated into conservation efforts. To test for adaptive differences between Olympia oyster populations a reciprocal transplant experiment was carried out monitoring survival, growth, and reproduction using three established populations of Ostrea lurida within Puget Sound, Washington. Performance differed for each population. Ostrea lurida from Dabob Bay had higher survival at all sites but lower reproductive activity and growth. Oysters from Oyster Bay demonstrated greater proportion of brooding females at a majority of sites with moderate growth and survival. Together these data suggest the existence of O. lurida population structure within Puget Sound and provide information on how broodstock should be selected for restoration purposes.


2017 ◽  
Author(s):  
J. Emerson Heare ◽  
Samuel J. White ◽  
Brent Vadopalas ◽  
Steven B. Roberts

Olympia oysters are the only oyster native to the west coast of North America. The population within Puget Sound, WA has been decreasing significantly since the early 1900’s. Current restoration efforts are focused on supplementing local populations with hatchery bred oysters. A recent study by Heare et al. (2015) has shown differences in stress response in oysters from different locations in Puget Sound however, nothing is known about the underlying mechanisms associated with these observed differences. In this study, expression of genes associated with growth, immune function, and gene regulatory activity in oysters from Oyster Bay, Dabob Bay, and Fidalgo Bay were characterized following temperature and mechanical stress. We found that heat stress and mechanical stress significantly changed expression in molecular regulatory activity and immune response, respectively. We also found that oysters from Oyster Bay had the most dramatic response to stress at the gene expression level. These data provide important baseline information on the physiological response of Ostrea lurida to stress and provide clues to underlying performance differences in the three populations examined.


Sign in / Sign up

Export Citation Format

Share Document