olympia oysters
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252810
Author(s):  
April D. Ridlon ◽  
Kerstin Wasson ◽  
Tiffany Waters ◽  
John Adams ◽  
Jamie Donatuto ◽  
...  

Conservation aquaculture is becoming an important tool to support the recovery of declining marine species and meet human needs. However, this tool comes with risks as well as rewards, which must be assessed to guide aquaculture activities and recovery efforts. Olympia oysters (Ostrea lurida) provide key ecosystem functions and services along the west coast of North America, but populations have declined to the point of local extinction in some estuaries. Here, we present a species-level, range-wide approach to strategically planning the use of aquaculture to promote recovery of Olympia oysters. We identified 12 benefits of culturing Olympia oysters, including identifying climate-resilient phenotypes that add diversity to growers’ portfolios. We also identified 11 key risks, including potential negative ecological and genetic consequences associated with the transfer of hatchery-raised oysters into wild populations. Informed by these trade-offs, we identified ten priority estuaries where aquaculture is most likely to benefit Olympia oyster recovery. The two highest scoring estuaries have isolated populations with extreme recruitment limitation—issues that can be addressed via aquaculture if hatchery capacity is expanded in priority areas. By integrating social criteria, we evaluated which project types would likely meet the goals of local stakeholders in each estuary. Community restoration was most broadly suited to the priority areas, with limited commercial aquaculture and no current community harvest of the species, although this is a future stakeholder goal. The framework we developed to evaluate aquaculture as a tool to support species recovery is transferable to other systems and species globally; we provide a guide to prioritizing local knowledge and developing recommendations for implementation by using transparent criteria. Our collaborative process engaging diverse stakeholders including managers, scientists, Indigenous Tribal representatives, and shellfish growers can be used elsewhere to seek win-win opportunities to expand conservation aquaculture where benefits are maximized for both people and imperiled species.


Author(s):  
April D. Ridlon ◽  
Althea Marks ◽  
Chela J. Zabin ◽  
Danielle Zacherl ◽  
Brian Allen ◽  
...  

AbstractMarine foundation species are critical to the structure and resilience of coastal ecosystems and provide key ecosystem services. Since many have suffered severe population declines, restoration of foundation species has been undertaken worldwide. The Olympia oyster (Ostrea lurida) is a foundation species, and the restoration of depleted populations is a priority for maintaining ecosystem function of estuaries along the west coast of North America. Here, we synthesize all native oyster restoration projects conducted from California, USA, to British Columbia, Canada, and analyze project goals, methods, and outcomes. Currently, restoration projects are spread unevenly across the species’ range, driven by locally varying goals and implemented with contrasting approaches. We highlight the value of regional strategic planning and decision support tools to evaluate project design and methods for restoration, including the selection of substrates and the targeted use of aquaculture. We recommend future investment in larger projects, which our analysis found were more cost-effective, but which have been relatively rare for this species. We also recommend that funders support monitoring over broader temporal and spatial scales than in the past to better characterize long-term effects of restoration on oyster populations and the services they provide beyond the project footprint. We found that most projects successfully supported native oysters and engaged local communities, and recommend similar efforts to continue to enhance understanding of Olympia oysters, which remain unfamiliar to many coastal residents. We believe that the results of this synthesis are broadly applicable to marine foundation species generally, and can inform restoration and conservation efforts worldwide.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Katherine E. Silliman ◽  
Tynan K. Bowyer ◽  
Steven B. Roberts

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4261 ◽  
Author(s):  
J. Emerson Heare ◽  
Samuel J. White ◽  
Brent Vadopalas ◽  
Steven B. Roberts

Olympia oysters are the only oyster native to the west coast of North America. The population within Puget Sound, WA has been decreasing significantly since the early 1900’s. Current restoration efforts are focused on supplementing local populations with hatchery bred oysters. A recent study by Heare et al. (2017) has shown differences in stress response in oysters from different locations in Puget Sound however, nothing is known about the underlying mechanisms associated with these observed differences. In this study, expression of genes associated with growth, immune function, and gene regulatory activity in oysters from Oyster Bay, Dabob Bay, and Fidalgo Bay were characterized following temperature and mechanical stress. We found that heat stress and mechanical stress significantly changed expression in molecular regulatory activity and immune response, respectively. We also found that oysters from Oyster Bay had the most dramatic response to stress at the gene expression level. These data provide important baseline information on the physiological response ofOstrea lurida to stress and provide clues to underlying performance differences in the three populations examined.


2017 ◽  
Author(s):  
J. Emerson Heare ◽  
Samuel J. White ◽  
Brent Vadopalas ◽  
Steven B. Roberts

Olympia oysters are the only oyster native to the west coast of North America. The population within Puget Sound, WA has been decreasing significantly since the early 1900’s. Current restoration efforts are focused on supplementing local populations with hatchery bred oysters. A recent study by Heare et al. (2015) has shown differences in stress response in oysters from different locations in Puget Sound however, nothing is known about the underlying mechanisms associated with these observed differences. In this study, expression of genes associated with growth, immune function, and gene regulatory activity in oysters from Oyster Bay, Dabob Bay, and Fidalgo Bay were characterized following temperature and mechanical stress. We found that heat stress and mechanical stress significantly changed expression in molecular regulatory activity and immune response, respectively. We also found that oysters from Oyster Bay had the most dramatic response to stress at the gene expression level. These data provide important baseline information on the physiological response of Ostrea lurida to stress and provide clues to underlying performance differences in the three populations examined.


2017 ◽  
Vol 4 (1) ◽  
Author(s):  
Samuel J. White ◽  
Brent Vadopalas ◽  
Katherine Silliman ◽  
Steven B. Roberts

2017 ◽  
Author(s):  
J. Emerson Heare ◽  
Samuel J. White ◽  
Brent Vadopalas ◽  
Steven B. Roberts

Olympia oysters are the only oyster native to the west coast of North America. The population within Puget Sound, WA has been decreasing significantly since the early 1900’s. Current restoration efforts are focused on supplementing local populations with hatchery bred oysters. A recent study by Heare et al. (2015) has shown differences in stress response in oysters from different locations in Puget Sound however, nothing is known about the underlying mechanisms associated with these observed differences. In this study, expression of genes associated with growth, immune function, and gene regulatory activity in oysters from Oyster Bay, Dabob Bay, and Fidalgo Bay were characterized following temperature and mechanical stress. We found that heat stress and mechanical stress significantly changed expression in molecular regulatory activity and immune response, respectively. We also found that oysters from Oyster Bay had the most dramatic response to stress at the gene expression level. These data provide important baseline information on the physiological response of Ostrea lurida to stress and provide clues to underlying performance differences in the three populations examined.


Sign in / Sign up

Export Citation Format

Share Document