repetition blindness
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 6)

H-INDEX

23
(FIVE YEARS 0)

Author(s):  
Irina M. Harris ◽  
William G. Hayward ◽  
Manuel S. Seet ◽  
Sally Andrews

2020 ◽  
Vol 20 (11) ◽  
pp. 1415
Author(s):  
David Huber ◽  
Lucas Huszar

2019 ◽  
Vol 27 (1) ◽  
pp. 1-7
Author(s):  
Catherine L. Caldwell-Harris ◽  
Lauren Saling

2018 ◽  
Author(s):  
John R Vokey ◽  
Scott W. Allen

Although commonly accepted as an encoding/representational/perceptual phenomenon, repeti- tion deficits (“repetition blindness”) in Rapid Serial Visual Presentation (RSVP) can be shown to be markedly influenced by retrieval-time tasks independently of item encoding. We demonstrate such influences in a series of within-participant experiments where retrieval conditions are un- predictably varied after items have been experienced. Repetition deficits are demonstrated when full report of the presented item is required and in partial-report conditions where the repeated letter is included in the retrieval cue but not in partial-report conditions where the repeated letter is not included in the retrieval cue. Such effects are not expected if repetition deficits in RSVP are thought to be principally a function of the encoding/representation/perception of the trial experience.


2017 ◽  
Vol 118 (5) ◽  
pp. 2601-2613
Author(s):  
Claire K. Naughtin ◽  
Benjamin J. Tamber-Rosenau ◽  
Paul E. Dux

Individuation refers to individualsʼ use of spatial and temporal properties to register objects as distinct perceptual events relative to other stimuli. Although behavioral studies have examined both spatial and temporal individuation, neuroimaging investigations have been restricted to the spatial domain and at relatively late stages of information processing. Here, we used univariate and multivoxel pattern analyses of functional MRI data to identify brain regions involved in individuating temporally distinct visual items and the neural consequences that arise when this process reaches its capacity limit (repetition blindness, RB). First, we found that regional patterns of blood-oxygen-level-dependent activity across the cortex discriminated between instances where repeated and nonrepeated stimuli were successfully individuated—conditions that placed differential demands on temporal individuation. These results could not be attributed to repetition suppression or other stimulus-related factors, task difficulty, regional activation differences, other capacity-limited processes, or artifacts in the data or analyses. Contrary to current theoretical models, this finding suggests that temporal individuation is supported by a distributed set of brain regions, rather than a single neural correlate. Second, conditions that reflect the capacity limit of individuation—instances of RB—lead to changes in the spatial patterns within this network, as well as amplitude changes in the left hemisphere premotor cortex, superior medial frontal cortex, anterior cingulate cortex, and bilateral parahippocampal place area. These findings could not be attributed to response conflict/ambiguity and likely reflect the core brain regions and mechanisms that underlie the capacity-limited process that gives rise to RB.NEW & NOTEWORTHY We present novel findings into the neural bases of temporal individuation and repetition blindness (RB)—the perceptual deficit that arises when this process reaches its capacity limit. Specifically, we found that temporal individuation is a widely distributed process in the brain and identified a number of candidate brain regions that appear to underpin RB. These findings enhance our understanding of how these fundamental perceptual processes are reflected in the human brain.


Sign in / Sign up

Export Citation Format

Share Document