generation efficiency
Recently Published Documents


TOTAL DOCUMENTS

539
(FIVE YEARS 144)

H-INDEX

34
(FIVE YEARS 6)

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 81
Author(s):  
Heangwoo Lee ◽  
Sowon Han ◽  
Janghoo Seo

Some recent research in the area of light shelves has been focused on applying photovoltaic modules to light shelves to save building energy. However, due to the modules installed on the light shelf reflectors, most such light shelves have failed to improve both daylighting and generation efficiency. This study proposes a folding technology to improve light shelves’ daylighting and generation efficiency that uses photovoltaic modules and validates their performance using a testbed. The major obtained findings are as follows: (1) The proposed folding technology has a structure in which reflectors and photovoltaic modules fold alternately by modularizing the light shelf. The reflector and photovoltaic modules are controlled by adjusting the degree of folding. (2) Because light shelf angles for improving daylighting and generation differed depending on the application of the photovoltaic module, the optimal light shelf specifications differed. (3) Compared to previous light shelf technologies, the light shelf with folding technology and a photovoltaic module reduced energy use by 31.3% to 38.2%. This demonstrates the efficacy of the proposed system. (4) Applying a photovoltaic module can lower the indoor uniformity ratio, which means that the daylighting performance of the light shelf is degraded due to the reduction of the area occupied by the reflector.


2022 ◽  
Vol 9 ◽  
Author(s):  
Minghui Liu ◽  
Chunhua Ju ◽  
Yan Wang

China’s power industry is in a critical transformation period. The new round of power system reform in 2015 will have a profound impact on China’s power industry. Therefore, it’s necessary to analyze the influencing factors of thermal power generation efficiency. Based on the thermal power generation industry related data in China’s 30 provinces from 2005 to 2017, this paper studies the impacts of market segmentation on thermal power generation efficiency in China. And the empirical result shows that the market segmentation exhibit significant negative effects on the thermal power generation efficiency, that is, the thermal power generation efficiency significantly decrease 1.6799 for each unit increase of market segmentation index of thermal power industry. Besides, by decomposing the dynamic thermal power efficiency index, we find that the “innovation effect” is the primary channel for the market segmentation to make effects on the thermal power generation efficiency. Furthermore, our findings are still robust after considering endogenous problems and eliminating the relevant data. Finally, research conclusions of our study paper provide empirical supports for the efficient development of China’s power market.


Author(s):  
В.Н. Трухин ◽  
В.А. Соловьев ◽  
И.А. Мустафин ◽  
М.Ю. Чернов

We present the results of terahertz generation studies under excitation via femtosecond lasers pulses epitaxial films of InAs, which were synthesized on semi-insulating and highly doped GaAs substrates. It is shown that a terahertz emitter based on epitaxial InAs film grown on a heavily doped GaAs n-type substrate, has the same terahertz generation efficiency as the InAs-film emitter grown on a semi-isolating GaAs substrate, but it has a significantly better spectral resolution, which is mainly determined by the parameters of the optical delay line and the femtosecond laser’s stability.


2022 ◽  
pp. 118723
Author(s):  
Lixin Zang ◽  
Huibin Wang ◽  
Zongxue Wang ◽  
Shumin Wang ◽  
Miaomiao Yu ◽  
...  

Author(s):  
Ziyue Xu ◽  
Weipeng Mao ◽  
Zizhen Zhao ◽  
Zekun Wang ◽  
Yue-Yang Liu ◽  
...  

Water-soluble three-dimensional supramolecular-organic frameworks (SOFs) and temoporfin (mTHPC) are discovered to form uniform self-assembly nanoparticles. These nanoparticles demonstrate an improved 1O2 generation efficiency due to a reduced aggregation-caused quenching effect....


Author(s):  
Vytenis Barkauskas ◽  
Artūras Plukis

Abstract The ionizing radiation created by high intensity and high repetition rate lasers can cause significant radiological hazard. Earlier defined electron temperature scalings are used for dose characterization and prediction using Monte Carlo modeling. Dosimetric implications of different electron temperature scalings are investigated and the resulting equivalent doses are compared. It was found that scaling defined by Beg et al.(1997) predicts the highest electron temperatures for given intensities, and subsequently the highest doses. The atomic number of the target, x-ray generation efficiency and interaction volume are the other parameters necessary for the dose evaluation. The set of these operational parameters should be sufficient to characterize radiological characteristics of ultrashort laser pulse based x-ray generators and evaluate radiological hazards of the laser processing facilities.


2021 ◽  
Vol 10 (15) ◽  
pp. e111101522720
Author(s):  
Lélio Alves Vieira ◽  
Edilberto Pereira Teixeira ◽  
Antonio Manoel Batista da Silva ◽  
Elizabeth Uber Bucek

The effluents from carbonization or pyrolysis and wood charcoal have aggregated thermal energy and, in conventional charcoal kilns, part of the wood is burned to ignite the burning in the kilns and the effluents generated are dispensed in the atmosphere and in the soil, which causes energy losses and environmental pollution. In this study we seek a clean and sustainable alternative to produce energy, in addition to the search for a system with satisfactory performance in the generation of electric energy. The objective of this study was to evaluate how much electricity can be produced from wood carbonization effluents by ONDATEC technology, using the Brayton and Rankine cycle, also known as Combined Cycle. This method presents a high power generation efficiency, around 50%, compared to other generation systems. A field experiment was carried out from October 21st to 24th, 2010 to determine the calorific value of wood carbonization effluents, using a microwave oven, (condensable and non-condensable gas), in the city of Uberaba -Mg, Brazil. The data generated in this study reveals important information for companies looking for a way to produce clean and renewable electricity from reforestation wood, in addition to the effort to minimize environmental pollution, ensure sustainability in production systems and the growing search for new sources of energy. A complete description of the experiment, including details of the project, is presented in this work.


Author(s):  
Wei Wei ◽  
Shuangying Ding ◽  
Silin Zheng ◽  
Jingjing Ma ◽  
Tong Niu ◽  
...  

How to achieve the continuous improvement of the environmental performance level of the power industry within the requirements of clean and low-carbon energy development is the fundamental requirement and inevitable choice for the construction of ecological civilization and sustainable development. From the perspective of environmental protection, based on the Data Envelopment Analysis (DEA) method and the internal mechanism of power system production and supply, the power industry environmental efficiency evaluation index system was constructed, and the two-stage Network Slack-based Measure (NSBM) model considering undesired output was used to calculate China’s 30 provinces and municipalities from 1998 to 2019. The environmental efficiency is divided into two links: power generation efficiency and transmission and distribution efficiency. The study found that, within the research interval, the overall environmental efficiency of China’s 30 provinces is low, and the differences between provinces and cities are large, but they have gradually developed in a better direction after 2015. The power generation efficiency of the first link in most provinces and municipalities is higher than the transmission and distribution efficiency of the second link, and the low transmission and distribution efficiency is an important reason for the low comprehensive level of environmental efficiency. The overall evolution trend of environmental efficiency in the six regions of China is roughly the same, but the regional differences are obvious, showing a trend of “high in the southeast and low in the northwest”. The economic and natural resource differences in different provinces and cities in each region have led to varying degrees of redundancy in five aspects, including investment in power assets, installed power generation capacity, and length of transmission lines, which seriously affect the environmental efficiency of the power industry. This research attempts to open the “black box” of the environmental efficiency conversion process of the power industry, which can provide directions and strategic suggestions for the improvement of the efficiency of the power industry in China.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7123
Author(s):  
Yung Hoon Lee ◽  
Joon Hyun Kim ◽  
Jaeyong Sung

A combination of the venturi module and the vortex cup was proposed to solve vortex instability and to enhance grip capacity. Mounting a venturi suction pad inside the vortex cup improved vacuum generation efficiency. When the vortex cup properly maintained the non-contact air gap and generated an equivalent vacuum to achieve a sealing effect around the open gap of the suction pad, the combined head improved grip capacity and stabilized the non-contact environment. Furthermore, the flow patterns around the venturi chamber and the swirl inside the vortex cup were analyzed based on the design elements of each module. In a module that integrated some of the venturi’s features internally, increased air consumption of the vortex cup was required than that of the venturi. However, it supported a wide range of non-contact grips. The coupled model effectively protected the vacuum suction features of the venturi suction pad in all non-contact environments in that range.


Sign in / Sign up

Export Citation Format

Share Document