active earth pressure
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 80)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Weidong Hu ◽  
Xinnian Zhu ◽  
Yongqing Zeng ◽  
Xiaohong Liu ◽  
Chucai Peng

AbstractA reasonable method is proposed to calculate the active earth pressure of finite soils based on the drum deformation mode of the flexible retaining wall close to the basement’s outer wall. The flexible retaining wall with cohesionless sand is studied, and the ultimate failure angle of finite soils close to the basement’s outer wall is obtained using the Coulomb theory. Soil arch theory is led to get the earth pressure coefficient in the subarea using the trace line of minor principal stress of circular arc after stress deflection. The soil layers at the top and bottom part of the retaining wall are restrained when the drum deformation occurs, and the soil layers are in a non-limit state. The linear relationship between the wall movement’s magnitude and the mobilization of the internal friction angle and the wall friction anger is presented. The level layer analysis method is modified to propose the resultant force of active earth pressure, the action point’s height, and the pressure distribution. Model tests are carried out to emulate the process of drum deformation and soil rupture with limited width. Through image analysis, it is found that the failure angle of soil within the limited width is larger than that of infinite soil. With the increase of the aspect ratio, the failure angle gradually reduces and tends to be constant. Compared with the test results, it is shown that the horizontal earth pressure reduces with the reduction of the aspect ratio within critical width, and the resultant force decreases with the increase of the limit state region under the same ratio. The middle part of the distribution curve is concave. The active earth pressure strength decreases less than Coulomb’s value, the upper and lower soil layers are in the non-limit state, and the active earth pressure strength is more than Coulomb’s value.


2021 ◽  
Vol 12 (1) ◽  
pp. 169
Author(s):  
Hui Liu ◽  
Dezhi Kong ◽  
Wensong Gan ◽  
Bingjie Wang

The traditional method for seismic earth pressure calculation has certain limitations for retaining structures under complex conditions. For example, when the soil width is small, the results obtained by the traditional method will be much larger. Therefore, this paper assumes that the soil slip surface is a logarithmic spiral. Based on the plane strain unified strength theory formula, while also considering the soil arching effects and tension cracks, the analytical solutions of the lateral earth pressure coefficient and the active earth pressure under the earthquake action were deduced. The mechanism and distribution of seismic active earth pressure with limited width were discussed in terms of some relevant parameters. The results indicated that the seismic active earth pressure presented a “convex” nonlinear distribution along the retaining structure. As the contribution of the intermediate principal stress increased, the strength limit of the material was effectively utilized, and the earth pressure was reduced by 22.96%. The resultant force increased as the horizontal seismic coefficient increased. However, this effect was no longer evident when the wall–soil friction angle was close to the internal friction angle. The resultant force action point increased with the wall–soil friction angle, and it should be noted that ha>H/3 was true when δ/φ0>0.55. Finally, by drawing a comparison with previous studies, we verified that the method proposed in this paper is reasonable and can provide a new idea for subsequent 3D seismic earth pressure research.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zheng-zhen Wang ◽  
Rang-cheng Kou ◽  
Yong Zhou ◽  
Tian-zhong Ma

At present, most seismic earth pressure theories have the limitations of complex derivation process and difficult solution. To solve these problems, considering the deflection of small principal stress caused by soil arching effect, the central arc soil arch was approximated to two inclined linear soil arches, which can greatly simplify the derivation process. Firstly, by improving the combination of differential thin-layer element method and pseudostatic method, the theoretical formulas of seismic active earth pressure intensity, resultant force size, and resultant force action point under translation mode (T mode) were derived and were verified by experimental results. Then, the influence of soil internal friction angle, wall-soil friction angle, and seismic coefficient on seismic active earth pressure theory was analyzed. The results show that the seismic active earth pressure is nonlinearly distributed, and the seismic horizontal coefficient has a greater influence than other influence factors. The theoretical results can provide reference for the seismic design of retaining wall.


2021 ◽  
pp. 100712
Author(s):  
Kewei Fan ◽  
Jun Yan ◽  
Weilie Zou ◽  
Zhong Han ◽  
Zhiqiang Lai

Sign in / Sign up

Export Citation Format

Share Document