Symplectic perturbation series methodology for non-conservative linear Hamiltonian system with damping

Author(s):  
Zhiping Qiu ◽  
Haijun Xia
2011 ◽  
Vol 2011 ◽  
pp. 1-26 ◽  
Author(s):  
Linyu Peng ◽  
Huafei Sun ◽  
Xiao Sun

We characterize the geometry of the Hamiltonian dynamics with a conformal metric. After investigating the Eisenhart metric, we study the corresponding conformal metric and obtain the geometric structure of the classical Hamiltonian dynamics. Furthermore, the equations for the conformal geodesics, for the Jacobi field along the geodesics, and the equations for a certain flow constrained in a family of conformal equivalent nondegenerate metrics are obtained. At last the conformal curvatures, the geodesic equations, the Jacobi equations, and the equations for the flow of the famous models, anNdegrees of freedom linear Hamiltonian system and the Hénon-Heiles model are given, and in a special case, numerical solutions of the conformal geodesics, the generalized momenta, and the Jacobi field along the geodesics of the Hénon-Heiles model are obtained. And the numerical results for the Hénon-Heiles model show us the instability of the associated geodesic spreads.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Yanqin Xiong ◽  
Maoan Han

This paper concerns limit cycle bifurcations by perturbing a piecewise linear Hamiltonian system. We first obtain all phase portraits of the unperturbed system having at least one family of periodic orbits. By using the first-order Melnikov function of the piecewise near-Hamiltonian system, we investigate the maximal number of limit cycles that bifurcate from a global center up to first order ofε.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Nina Xue ◽  
Wencai Zhao

In this paper, we consider the effective reducibility of the quasi-periodic linear Hamiltonian system x˙=A+εQt,εx, ε∈0,ε0, where A is a constant matrix with possible multiple eigenvalues and Q(t,ε) is analytic quasi-periodic with respect to t. Under nonresonant conditions, it is proved that this system can be reduced to y˙=A⁎ε+εR⁎t,εy, ε∈0,ε⁎, where R⁎ is exponentially small in ε, and the change of variables that perform such a reduction is also quasi-periodic with the same basic frequencies as Q.


Sign in / Sign up

Export Citation Format

Share Document