nanoparticle probes
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 31)

H-INDEX

55
(FIVE YEARS 5)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cassandra M. Stawicki ◽  
Torri E. Rinker ◽  
Markus Burns ◽  
Sonal S. Tonapi ◽  
Rachel P. Galimidi ◽  
...  

AbstractFluorescently labeled antibody and aptamer probes are used in biological studies to characterize binding interactions, measure concentrations of analytes, and sort cells. Fluorescent nanoparticle labels offer an excellent alternative to standard fluorescent labeling strategies due to their enhanced brightness, stability and multivalency; however, challenges in functionalization and characterization have impeded their use. This work introduces a straightforward approach for preparation of fluorescent nanoparticle probes using commercially available reagents and common laboratory equipment. Fluorescent polystyrene nanoparticles, Thermo Fisher Scientific FluoSpheres, were used in these proof-of-principle studies. Particle passivation was achieved by covalent attachment of amine-PEG-azide to carboxylated particles, neutralizing the surface charge from − 43 to − 15 mV. A conjugation-annealing handle and DNA aptamer probe were attached to the azide-PEG nanoparticle surface either through reaction of pre-annealed handle and probe or through a stepwise reaction of the nanoparticles with the handle followed by aptamer annealing. Nanoparticles functionalized with DNA aptamers targeting histidine tags and VEGF protein had high affinity (EC50s ranging from 3 to 12 nM) and specificity, and were more stable than conventional labels. This protocol for preparation of nanoparticle probes relies solely on commercially available reagents and common equipment, breaking down the barriers to use nanoparticles in biological experiments.


2021 ◽  
Author(s):  
Cassandra M. Stawicki ◽  
Torri E. Rinker ◽  
Markus Burns ◽  
Sonal S. Tonapi ◽  
Rachel P. Galimidi ◽  
...  

Fluorescently labeled antibody and aptamer probes are used in biological studies to characterize binding interactions, measure concentrations of analytes, and sort cells. Fluorescent nanoparticle labels offer an excellent alternative to standard fluorescent labeling strategies due to their enhanced brightness, stability and multivalency; however, challenges in functionalization and characterization have impeded their use. This work introduces a straightforward approach for preparation of fluorescent nanoparticle probes using commercially available reagents and common laboratory equipment. Fluorescent polystyrene nanoparticles, Thermo Fisher FluoSpheres™, were used in proof-of-principle studies. Particle passivation was achieved by covalent attachment of amine-PEG-azide to carboxylated particles, neutralizing the surface charge from -47 to -17 mV. A conjugation-annealing handle and DNA aptamer probe was attached to the azide-PEG nanoparticle surface either through reaction of pre-annealed handle and probe or through a stepwise reaction of the nanoparticles with the handle followed by aptamer annealing. Nanoparticles functionalized with DNA aptamers targeting histidine tags and VEGF protein had high affinity (EC50s ranging from 2-7 nM) and specificity, and were more stable than conventional labels. This protocol for preparation of nanoparticle probes relies solely on commercially available reagents and common equipment, breaking down the barriers to use of nanoparticles in biological experiments.


Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 191
Author(s):  
Hyun Tae Kim ◽  
Enjian Jin ◽  
Min-Ho Lee

In this study, we developed the portable chemiluminescence (CL)-based lateral flow assay (LFA) platform for the detection of cortisol in human serum. Cortisol is well-known as a stress hormone due to its high relevancy for human mental and physical health, such as hypertension or depression. To date, a number of optical devices have provided the sensitive determination of levels of analytes. However, this modality type still requires costly optical modules. The developed CL platform is simply composed of two detection modules along with a loading part for the LFA strip. The LFA membrane contains gold nanoparticle probes conjugated with antibodies against cortisol and horseradish peroxidase (HRP), which can also efficiently increase the luminescent signal by providing many areas for anti-cortisol antibody and HRP. The measured voltage signals coming from the photodiode in a CL reader were compared with a standard microplate reader for the evaluation of accuracy. The linear range observed for cortisol was measured to be 0.78–12.5 μg/dL (R2 = 0.99) with a limit of detection (LOD) of 0.342 μg/dL. In addition, the CL-LFA reader showed a high correlation (R2 = 0.96) with the standard cortisol console (COBAS 8000, Roche), suggesting that our developed CL-based LFA platform can be usable in situ.


2021 ◽  
Vol 179 ◽  
pp. 113084 ◽  
Author(s):  
Sylvie Egloff ◽  
Nina Melnychuk ◽  
Andreas Reisch ◽  
Sophie Martin ◽  
Andrey S. Klymchenko

Nanoscale ◽  
2021 ◽  
Author(s):  
F. Mousseau ◽  
C. Féraudet Tarisse ◽  
S. Simon ◽  
T. Gacoin ◽  
A. Alexandrou ◽  
...  

We developed a portable, fast, highly sensitive and quantitative in vitro assay for on-site biomolecule detection by combining the remarkable optical properties of new lanthanide-doped nanoparticle probes with a simple reader coupled to a smartphone.


Soft Matter ◽  
2021 ◽  
Author(s):  
Hannah R. Shanks ◽  
Shanglin Wu ◽  
Nam T. Nguyen ◽  
Dongdong Lu ◽  
Brian R. Saunders

Remote measurement of the deformation ratio and discrimination between tension and compression for injectable gels is demonstrated using photoluminescence and two types of fluorescent probe particles.


Sign in / Sign up

Export Citation Format

Share Document