scholarly journals Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang ◽  
Qiongfen Zhang

AbstractIn this paper, we focus on the existence of solutions for the Choquard equation $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ { − Δ u + V ( x ) u = ( I α ∗ | u | α N + 1 ) | u | α N − 1 u + λ | u | p − 2 u , x ∈ R N ; u ∈ H 1 ( R N ) , where $\lambda >0$ λ > 0 is a parameter, $\alpha \in (0,N)$ α ∈ ( 0 , N ) , $N\ge 3$ N ≥ 3 , $I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$ I α : R N → R is the Riesz potential. As usual, $\alpha /N+1$ α / N + 1 is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if $\lambda >\lambda _{*}$ λ > λ ∗ for some given number $\lambda _{*}$ λ ∗ in three cases: (i) $2< p<\frac{4}{N}+2$ 2 < p < 4 N + 2 , (ii) $p=\frac{4}{N}+2$ p = 4 N + 2 , and (iii) $\frac{4}{N}+2< p<2^{*}$ 4 N + 2 < p < 2 ∗ . Our result improves the previous related ones in the literature.

2019 ◽  
Vol 22 (04) ◽  
pp. 1950023 ◽  
Author(s):  
Xinfu Li ◽  
Shiwang Ma

In this paper, we study the Brezis–Nirenberg type problem for Choquard equations in [Formula: see text] [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] or [Formula: see text] are the critical exponents in the sense of Hardy–Littlewood–Sobolev inequality and [Formula: see text] is the Riesz potential. Based on the results of the subcritical problems, and by using the subcritical approximation and the Pohožaev constraint method, we obtain a positive and radially nonincreasing ground-state solution in [Formula: see text] for the problem. To the end, the regularity and the Pohožaev identity of solutions to a general Choquard equation are obtained.


2020 ◽  
Vol 10 (1) ◽  
pp. 152-171
Author(s):  
Sitong Chen ◽  
Xianhua Tang ◽  
Jiuyang Wei

Abstract This paper deals with the following Choquard equation with a local nonlinear perturbation: $$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} - {\it\Delta} u+u=\left(I_{\alpha}*|u|^{\frac{\alpha}{2}+1}\right)|u|^{\frac{\alpha}{2}-1}u +f(u), & x\in \mathbb{R}^2; \\ u\in H^1(\mathbb{R}^2), \end{array} \right. \end{array}$$ where α ∈ (0, 2), Iα : ℝ2 → ℝ is the Riesz potential and f ∈ 𝓒(ℝ, ℝ) is of critical exponential growth in the sense of Trudinger-Moser. The exponent $\begin{array}{} \displaystyle \frac{\alpha}{2}+1 \end{array}$ is critical with respect to the Hardy-Littlewood-Sobolev inequality. We obtain the existence of a nontrivial solution or a Nehari-type ground state solution for the above equation in the doubly critical case, i.e. the appearance of both the lower critical exponent $\begin{array}{} \displaystyle \frac{\alpha}{2}+1 \end{array}$ and the critical exponential growth of f(u).


2019 ◽  
Vol 150 (3) ◽  
pp. 1377-1400 ◽  
Author(s):  
Daniele Cassani ◽  
Jean Van Schaftingen ◽  
Jianjun Zhang

AbstractFor the Choquard equation, which is a nonlocal nonlinear Schrödinger type equation, $$-\Delta u+V_{\mu, \nu} u=(I_\alpha\ast \vert u \vert ^{({N+\alpha})/{N}}){ \vert u \vert }^{{\alpha}/{N}-1}u,\quad {\rm in} \ {\open R}^N, $$where $N\ges 3$, Vμ,ν :ℝN → ℝ is an external potential defined for μ, ν > 0 and x ∈ ℝN by Vμ,ν(x) = 1 − μ/(ν2 + |x|2) and $I_\alpha : {\open R}^N \to 0$ is the Riesz potential for α ∈ (0, N), we exhibit two thresholds μν, μν > 0 such that the equation admits a positive ground state solution if and only if μν < μ < μν and no ground state solution exists for μ < μν. Moreover, if μ > max{μν, N2(N − 2)/4(N + 1)}, then equation still admits a sign changing ground state solution provided $N \ges 4$ or in dimension N = 3 if in addition 3/2 < α < 3 and $\ker (-\Delta + V_{\mu ,\nu }) = \{ 0\} $, namely in the non-resonant case.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Youpei Zhang ◽  
Xianhua Tang ◽  
Vicenţiu D. Rădulescu

<p style='text-indent:20px;'>We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ - \Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ = \left( \int_{\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\lambda(x,y)} dy\right) |u|^{r(x)-2} u+g(x,u)\ \mbox{in}\ \mathbb R^N, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where the exponent <inline-formula><tex-math id="M1">\begin{document}$ r(\cdot) $\end{document}</tex-math></inline-formula> is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation <inline-formula><tex-math id="M2">\begin{document}$ g(\cdot ,\cdot) $\end{document}</tex-math></inline-formula> is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity <inline-formula><tex-math id="M3">\begin{document}$ g(\cdot ,\cdot) $\end{document}</tex-math></inline-formula> is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.</p>


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


2012 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Die Hu ◽  
Xianhua Tang ◽  
Qi Zhang

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> which are almost necessary, we prove that problem <inline-formula><tex-math id="M6">\begin{document}$ (\rm P) $\end{document}</tex-math></inline-formula> has a nontrivial solution <inline-formula><tex-math id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M8">\begin{document}$ \bar{v} = G(\bar{u}) $\end{document}</tex-math></inline-formula> is a ground state solution of the following problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M9">\begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document}</tex-math></inline-formula>. We also give a minimax characterization for the ground state solution <inline-formula><tex-math id="M10">\begin{document}$ \bar{v} $\end{document}</tex-math></inline-formula>.</p>


2019 ◽  
Vol 150 (2) ◽  
pp. 921-954 ◽  
Author(s):  
Fashun Gao ◽  
Edcarlos D. da Silva ◽  
Minbo Yang ◽  
Jiazheng Zhou

AbstractIn this paper, we consider the nonlinear Choquard equation $$-\Delta u + V(x)u = \left( {\int_{{\open R}^N} {\displaystyle{{G(u)} \over { \vert x-y \vert ^\mu }}} \,{\rm d}y} \right)g(u)\quad {\rm in}\;{\open R}^N, $$ where 0 < μ < N, N ⩾ 3, g(u) is of critical growth due to the Hardy–Littlewood–Sobolev inequality and $G(u)=\int ^u_0g(s)\,{\rm d}s$. Firstly, by assuming that the potential V(x) might be sign-changing, we study the existence of Mountain-Pass solution via a nonlocal version of the second concentration- compactness principle. Secondly, under the conditions introduced by Benci and Cerami , we also study the existence of high energy solution by using a nonlocal version of global compactness lemma.


2019 ◽  
Vol 9 (1) ◽  
pp. 413-437 ◽  
Author(s):  
Xianhua Tang ◽  
Sitong Chen

Abstract In the present paper, we consider the following singularly perturbed problem: $$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} -\varepsilon^2\triangle u+V(x)u=\varepsilon^{-\alpha}(I_{\alpha}*F(u))f(u), & x\in \mathbb{R}^N; \\ u\in H^1(\mathbb{R}^N), \end{array} \right. \end{array}$$ where ε > 0 is a parameter, N ≥ 3, α ∈ (0, N), F(t) = $\begin{array}{} \int_{0}^{t} \end{array}$f(s)ds and Iα : ℝN → ℝ is the Riesz potential. By introducing some new tricks, we prove that the above problem admits a semiclassical ground state solution (ε ∈ (0, ε0)) and a ground state solution (ε = 1) under the general “Berestycki-Lions assumptions” on the nonlinearity f which are almost necessary, as well as some weak assumptions on the potential V. When ε = 1, our results generalize and improve the ones in [V. Moroz, J. Van Schaftingen, T. Am. Math. Soc. 367 (2015) 6557-6579] and [H. Berestycki, P.L. Lions, Arch. Rational Mech. Anal. 82 (1983) 313-345] and some other related literature. In particular, we propose a new approach to recover the compactness for a (PS)-sequence, and our approach is useful for many similar problems.


2019 ◽  
Vol 19 (4) ◽  
pp. 779-795
Author(s):  
Guangze Gu ◽  
Xianhua Tang

AbstractIn this paper, we consider the Kirchhoff equation with Hartree-type nonlinearity\left\{\begin{aligned} \displaystyle-&\displaystyle\biggl{(}\varepsilon^{2}a+% \varepsilon b\int_{\mathbb{R}^{3}}\lvert\nabla u\rvert^{2}\mathop{}\!dx\biggr{% )}\Delta u+V(x)u=\varepsilon^{\mu-3}\biggl{(}\int_{\mathbb{R}^{3}}\frac{K(y)F(% u(y))}{\lvert x-y\rvert^{\mu}}\mathop{}\!dy\biggr{)}K(x)f(u),\\ &\displaystyle u\in H^{1}(\mathbb{R}^{3}),\end{aligned}\right.where {\varepsilon>0} is a small parameter, {a,b>0}, {\mu\in(0,3)}, {V,K} are two positive continuous function and F is the primitive function of f which is superlinear but subcritical at infinity in the sense of the Hardy–Littlewood–Sobolev inequality. We show that the equation admits a positive ground state solution for {\varepsilon>0} sufficiently small. Furthermore, we prove that these ground state solutions concentrate around such points which are both the minima points of the potential V and the maximum points of the potential K as {\varepsilon\to 0}.


Sign in / Sign up

Export Citation Format

Share Document