Mathematical Foundations of Computing
Latest Publications


TOTAL DOCUMENTS

109
(FIVE YEARS 89)

H-INDEX

5
(FIVE YEARS 2)

Published By American Institute Of Mathematical Sciences

2577-8838

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Purshottam Narain Agrawal ◽  
Jitendra Kumar Singh

<p style='text-indent:20px;'>The aim of this paper is to study some approximation properties of the Durrmeyer variant of <inline-formula><tex-math id="M2">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula>-Baskakov operators <inline-formula><tex-math id="M3">\begin{document}$ M_{n,\alpha} $\end{document}</tex-math></inline-formula> proposed by Aral and Erbay [<xref ref-type="bibr" rid="b3">3</xref>]. We study the error in the approximation by these operators in terms of the Lipschitz type maximal function and the order of approximation for these operators by means of the Ditzian-Totik modulus of smoothness. The quantitative Voronovskaja and Gr<inline-formula><tex-math id="M4">\begin{document}$ \ddot{u} $\end{document}</tex-math></inline-formula>ss Voronovskaja type theorems are also established. Next, we modify these operators in order to preserve the test functions <inline-formula><tex-math id="M5">\begin{document}$ e_0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ e_2 $\end{document}</tex-math></inline-formula> and show that the modified operators give a better rate of convergence. Finally, we present some graphs to illustrate the convergence behaviour of the operators <inline-formula><tex-math id="M7">\begin{document}$ M_{n,\alpha} $\end{document}</tex-math></inline-formula> and show the comparison of its rate of approximation vis-a-vis the modified operators.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ana-Maria Acu ◽  
Ioan Cristian Buscu ◽  
Ioan Rasa

<p style='text-indent:20px;'>Starting with a positive linear operator we apply the Kantorovich modification and a related modification. The resulting operators are investigated. We are interested in the eigenstructure, Voronovskaya formula, the induced generalized convexity, invariant measures and iterates. Some known results from the literature are extended.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tonghui Zhang ◽  
Hong Lu ◽  
Shudi Yang

<p style='text-indent:20px;'>Linear codes with few weights are widely used in strongly regular graphs, secret sharing schemes, association schemes and authentication codes. In this paper, we construct several two-weight and three-weight linear codes over finite fields by choosing suitable different defining sets. We also give some examples and some of the codes are optimal or almost optimal. Their applications to secret sharing schemes are also investigated.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Gümrah Uysal

<p style='text-indent:20px;'>In the present paper, we consider a general class of operators enriched with some properties in order to act on <inline-formula><tex-math id="M1">\begin{document}$ C^{\ast }( \mathbb{R} _{0}^{+}) $\end{document}</tex-math></inline-formula>. We establish uniform convergence of the operators for every function in <inline-formula><tex-math id="M2">\begin{document}$ C^{\ast }( \mathbb{R} _{0}^{+}) $\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R} _{0}^{+} $\end{document}</tex-math></inline-formula>. Then, a quantitative result is proved. A quantitative Voronovskaya-type estimate is obtained. Finally, some applications are provided concerning particular kernel functions.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Harun Karsli

<p style='text-indent:20px;'>The concern of this study is to construction of a multidimensional version of Urysohn type generalized sampling operators, whose one dimensional case defined and investigated by the author in [<xref ref-type="bibr" rid="b28">28</xref>] and [<xref ref-type="bibr" rid="b27">27</xref>]. In details, as a continuation of the studies of the author, the paper centers around to investigation of some approximation and asymptotic properties of the aforementioned linear multidimensional Urysohn type generalized sampling operators.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Lucas Colucci ◽  
Ervin Győri

<p style='text-indent:20px;'>We refine two results of Jiang, Shao and Vesel on the <inline-formula><tex-math id="M2">\begin{document}$ L(2,1) $\end{document}</tex-math></inline-formula>-labeling number <inline-formula><tex-math id="M3">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> of the Cartesian and the strong product of two oriented cycles. For the Cartesian product, we compute the exact value of <inline-formula><tex-math id="M4">\begin{document}$ \lambda(\overrightarrow{C_m} \square \overrightarrow{C_n}) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M5">\begin{document}$ m $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ n \geq 40 $\end{document}</tex-math></inline-formula>; in the case of strong product, we either compute the exact value or establish a gap of size one for <inline-formula><tex-math id="M7">\begin{document}$ \lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M8">\begin{document}$ m $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ n \geq 48 $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yuyan Yao ◽  
Gang Wang

<p style='text-indent:20px;'><inline-formula><tex-math id="M1">\begin{document}$ M $\end{document}</tex-math></inline-formula>-eigenvalues of partially symmetric nonnegative tensors play important roles in the nonlinear elastic material analysis and the entanglement problem of quantum physics. In this paper, we establish two upper bounds for the maximum <inline-formula><tex-math id="M2">\begin{document}$ M $\end{document}</tex-math></inline-formula>-eigenvalue of partially symmetric nonnegative tensors, which improve some existing results. Numerical examples are proposed to verify the efficiency of the obtained results.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Anca Croitoru ◽  
Alina GavriluŢ ◽  
Alina Iosif ◽  
Anna Rita Sambucini

<p style='text-indent:20px;'>Some limit theorems are presented for Riemann-Lebesgue integrals where the functions <inline-formula><tex-math id="M1">\begin{document}$ G_n $\end{document}</tex-math></inline-formula> and the measures <inline-formula><tex-math id="M2">\begin{document}$ M_n $\end{document}</tex-math></inline-formula> are interval valued and the convergence for the multisubmeasures is setwise. In particular sufficient conditions in order to obtain <inline-formula><tex-math id="M3">\begin{document}$ \int G_n dM_n \to \int G dM $\end{document}</tex-math></inline-formula> are given.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ferenc Weisz

<p style='text-indent:20px;'>We give four generalizations of the classical Lebesgue's theorem to multi-dimensional functions and Fourier series. We introduce four new concepts of Lebesgue points, the corresponding Hardy-Littlewood type maximal functions and show that almost every point is a Lebesgue point. For four different types of summability and convergences investigated in the literature, we prove that the Cesàro means <inline-formula><tex-math id="M1">\begin{document}$ \sigma_n^{\alpha}f $\end{document}</tex-math></inline-formula> of the Fourier series of a multi-dimensional function converge to <inline-formula><tex-math id="M2">\begin{document}$ f $\end{document}</tex-math></inline-formula> at each Lebesgue point as <inline-formula><tex-math id="M3">\begin{document}$ n\to \infty $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document