geostrophic turbulence
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 19)

H-INDEX

35
(FIVE YEARS 3)

Abstract The discrete baroclinic modes of quasigeostrophic theory are incomplete and the incompleteness manifests as a loss of information in the projection process. The incompleteness of the baroclinic modes is related to the presence of two previously unnoticed stationary step-wave solutions of the Rossby wave problem with flat boundaries. These step-waves are the limit of surface quasigeostrophic waves as boundary buoyancy gradients vanish. A complete normal mode basis for quasigeostrophic theory is obtained by considering the traditional Rossby wave problem with prescribed buoyancy gradients at the lower and upper boundaries. The presence of these boundary buoyancy gradients activates the previously inert boundary degrees of freedom. These Rossby waves have several novel properties such as the presence of multiple modes with no internal zeros, a finite number of modes with negative norms, and their vertical structures form a basis capable of representing any quasigeostrophic state with a differentiable series expansion. These properties are a consequence of the Pontryagin space setting of the Rossby wave problem in the presence of boundary buoyancy gradients (as opposed to the usual Hilbert space setting). We also examine the quasigeostrophic vertical velocity modes and derive a complete basis for such modes as well. A natural application of these modes is the development of a weakly non-linear wave-interaction theory of geostrophic turbulence that takes topography into account.


2021 ◽  
Author(s):  
Han Wang ◽  
Nicolas Grisouard ◽  
Hesam Salehipour ◽  
Alice Nuz ◽  
Michael Poon ◽  
...  

2021 ◽  
Vol 118 (44) ◽  
pp. e2105015118
Author(s):  
Vincent Bouillaut ◽  
Benjamin Miquel ◽  
Keith Julien ◽  
Sébastien Aumaître ◽  
Basile Gallet

The competition between turbulent convection and global rotation in planetary and stellar interiors governs the transport of heat and tracers, as well as magnetic field generation. These objects operate in dynamical regimes ranging from weakly rotating convection to the “geostrophic turbulence” regime of rapidly rotating convection. However, the latter regime has remained elusive in the laboratory, despite a worldwide effort to design ever-taller rotating convection cells over the last decade. Building on a recent experimental approach where convection is driven radiatively, we report heat transport measurements in quantitative agreement with this scaling regime, the experimental scaling law being validated against direct numerical simulations (DNS) of the idealized setup. The scaling exponent from both experiments and DNS agrees well with the geostrophic turbulence prediction. The prefactor of the scaling law is greater than the one diagnosed in previous idealized numerical studies, pointing to an unexpected sensitivity of the heat transport efficiency to the precise distribution of heat sources and sinks, which greatly varies from planets to stars.


2021 ◽  
Vol 33 (10) ◽  
pp. 101705
Author(s):  
G. G. Sutyrin ◽  
T. Radko ◽  
J. C. McWilliams

2021 ◽  
Vol 916 ◽  
Author(s):  
M.A.C. Savva ◽  
H.A. Kafiabad ◽  
J. Vanneste

Abstract


2021 ◽  
Author(s):  
Houssam Yassin ◽  
Stephen Griffies

<p>The baroclinic modes of quasigeostrophic theory are incomplete and the incompleteness manifests as a loss of information in the projection process. The incompleteness of the baroclinic modes is related to the presence of two previously unnoticed stationary step-wave solutions of the Rossby wave problem with flat boundaries. These step-waves are the limit of surface quasigeostrophic waves as boundary buoyancy gradients vanish. A complete normal mode basis for quasigeostrophic theory is obtained by considering the traditional Rossby wave problem with prescribed buoyancy gradients at the lower and upper boundaries. The presence of these boundary buoyancy gradients activates the previously inert boundary degrees of freedom. These Rossby waves have several novel properties such as the presence of multiple equivalent barotropic modes, a finite number of modes with negative norms, and their vertical structures form a basis capable of representing any quasigeostrophic state. Using this complete basis, we are able to obtain a series expansion to the potential vorticity of Bretherton (with Dirac delta contributions). We compare the convergence and differentiability properties of these complete modes with various other modes in the literature. We also examine the quasigeostrophic vertical velocity modes and derive a complete basis for such modes as well. In the process, we introduce the concept of the quasigeostrophic phase space which we define to be the space of all possible quasigeostrophic states. A natural application of these modes is the development of a weakly non-linear wave-interaction theory of geostrophic turbulence that takes prescribed boundary buoyancy gradients into account.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rentian Hu ◽  
Thomas K. Edwards ◽  
Leslie M. Smith ◽  
Samuel N. Stechmann

Author(s):  
Yanxu Chen ◽  
David Straub ◽  
Louis-Philippe Nadeau

AbstractA new coupled model is developed to investigate interactions among geostrophic, Ekman and near-inertial (NI) flows. The model couples a time-dependent nonlinear slab Ekman layer with a two-layer shallow water model. Wind stress forces the slab layer and horizontal divergence of slab-layer transport appears as a forcing in the continuity equation of the shallow water model. In one version of the slab model, self-advection of slab-layer momentum is retained and in another it is not. The most obvious impact of this explicit representation of the surface-layer dynamics is in the high-frequency part of the flow. For example, near-inertial oscillations are significantly stronger when self-advection of slab-layer momentum is retained, this being true both for the slab-layer flow itself and for the interior flow that it excites. In addition, retaining the self-advection terms leads to a new instability, which causes growth of slab-layer near-inertial oscillations in regions of anticyclonic forcing and decay in regions of cyclonic forcing. In contrast to inertial instability, it is the sign of the forcing, not that of the underlying vorticity that determines stability. High-passed surface pressure fields are also examined and show the surface signature of unbalanced flow to differ substantially depending on whether a slab-layer model is used and, if so, whether self-advection of slab-layer momentum is retained.


Sign in / Sign up

Export Citation Format

Share Document