dynamical regimes
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 75)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Amit Vashisht ◽  
Maxime Richard ◽  
Anna Minguzzi

We study the Bose polaron problem in a nonequilibrium setting, by considering an impurity embedded in a quantum fluid of light realized by exciton-polaritons in a microcavity, subject to a coherent drive and dissipation on account of pump and cavity losses. We obtain the polaron effective mass, the drag force acting on the impurity, and determine polaron trajectories at a semiclassical level. We find different dynamical regimes, originating from the unique features of the excitation spectrum of driven-dissipative polariton fluids, in particular a non-trivial regime of acceleration against the flow. Our work promotes the study of impurity dynamics as an alternative testbed for probing superfluidity in quantum fluids of light.


2021 ◽  
Author(s):  
Pok Him Siu ◽  
Eli J Muller ◽  
Valerio Zerbi ◽  
Kevin Aquino ◽  
Ben D. Fulcher

New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes (including where all brain regions are confined to a stable fixed point) where regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 114
Author(s):  
Maksim Kiselev ◽  
Elena Gryzlova ◽  
Sergei Burkov ◽  
Oleg Zatsarinny ◽  
Alexei Grum-Grzhimailo

The formation and decay of double-core-hole (DCH) states of the neon ion irradiated by an intense electromagnetic x-ray field are studied theoretically. In the present research DCH formation is the result of sequential absorption of two photons with the creation of an intermediate ion. Detailed calculations of the partial decays and probabilities of shake-ups at the atomic and ionic ionization stages are presented. The angular distribution of photoelectrons corresponding to various residual ionic states are calculated. Specifically, we predict the lack of any photoelectrons corresponding to the residual ionic state 1s12s22pnmpn′2Sf+1D in the direction of the electric field polarization. Dynamical competition between single-core-hole state decay and excitation is analyzed and pulse parameters corresponding to various dynamical regimes are found.


2021 ◽  
Author(s):  
Tarek Jabri ◽  
Jason N MacLean

Complex systems can be defined by "sloppy" dimensions, meaning that their behavior is unmodified by large changes to specific parameter combinations, and "stiff" dimensions whose changes result in considerable modifications. In the case of the neocortex, sloppiness in synaptic architectures would be crucial to allow for the maintenance of spiking dynamics in the normal range despite a diversity of inputs and both short- and long-term changes to connectivity. Using simulations on neural networks with spiking matched to murine visual cortex, we determined the stiff and sloppy parameters of synaptic architectures across three classes of input (brief, continuous, and cyclical). Large-scale algorithmically-generated connectivity parameter values revealed that specific combinations of excitatory and inhibitory connectivity are stiff and that all other architectural details are sloppy. Stiff dimensions are consistent across a range of different input classes with self-sustaining synaptic architectures occupying a smaller subspace as compared to the other input classes. We also find that experimentally estimated connectivity probabilities from mouse visual cortex are similarly stiff and sloppy when compared to the architectures that we identified algorithmically. This suggests that simple statistical descriptions of spiking dynamics are a sufficient and parsimonious description of neocortical activity when examining structure-function relationships at the mesoscopic scale. Moreover, this study provides further evidence of the importance of the interrelationship of excitatory and inhibitory connectivity to establish and maintain stable spiking dynamical regimes in neocortex.


2021 ◽  
Vol 929 ◽  
Author(s):  
Charlie Lin ◽  
Dinesh Kumar ◽  
Channing M. Richter ◽  
Shiyan Wang ◽  
Charles M. Schroeder ◽  
...  

Although the behaviour of fluid-filled vesicles in steady flows has been extensively studied, far less is understood regarding the shape dynamics of vesicles in time-dependent oscillatory flows. Here, we investigate the nonlinear dynamics of vesicles in large amplitude oscillatory extensional (LAOE) flows using both experiments and boundary integral (BI) simulations. Our results characterize the transient membrane deformations, dynamical regimes and stress response of vesicles in LAOE in terms of reduced volume (vesicle asphericity), capillary number ( ${Ca}$ , dimensionless flow strength) and Deborah number ( ${De}$ , dimensionless flow frequency). Results from single vesicle experiments are found to be in good agreement with BI simulations across a wide range of parameters. Our results reveal three distinct dynamical regimes based on vesicle deformation: pulsating, reorienting and symmetrical regimes. We construct phase diagrams characterizing the transition of vesicle shapes between pulsating, reorienting and symmetrical regimes within the two-dimensional Pipkin space defined by ${De}$ and ${Ca}$ . Contrary to observations on clean Newtonian droplets, vesicles do not reach a maximum length twice per strain rate cycle in the reorienting and pulsating regimes. The distinct dynamics observed in each regime result from a competition between the flow frequency, flow time scale and membrane deformation time scale. By calculating the particle stresslet, we quantify the nonlinear relationship between average vesicle stress and strain rate. Additionally, we present results on tubular vesicles that undergo shape transformation over several strain cycles. Broadly, our work provides new information regarding the transient dynamics of vesicles in time-dependent flows that directly informs bulk suspension rheology.


2021 ◽  
Vol 118 (44) ◽  
pp. e2105015118
Author(s):  
Vincent Bouillaut ◽  
Benjamin Miquel ◽  
Keith Julien ◽  
Sébastien Aumaître ◽  
Basile Gallet

The competition between turbulent convection and global rotation in planetary and stellar interiors governs the transport of heat and tracers, as well as magnetic field generation. These objects operate in dynamical regimes ranging from weakly rotating convection to the “geostrophic turbulence” regime of rapidly rotating convection. However, the latter regime has remained elusive in the laboratory, despite a worldwide effort to design ever-taller rotating convection cells over the last decade. Building on a recent experimental approach where convection is driven radiatively, we report heat transport measurements in quantitative agreement with this scaling regime, the experimental scaling law being validated against direct numerical simulations (DNS) of the idealized setup. The scaling exponent from both experiments and DNS agrees well with the geostrophic turbulence prediction. The prefactor of the scaling law is greater than the one diagnosed in previous idealized numerical studies, pointing to an unexpected sensitivity of the heat transport efficiency to the precise distribution of heat sources and sinks, which greatly varies from planets to stars.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pietro Tierno ◽  
Tom H. Johansen ◽  
Arthur V. Straube

AbstractThe stable assembly of fluctuating nanoparticle clusters on a surface represents a technological challenge of widespread interest for both fundamental and applied research. Here we demonstrate a technique to stably confine in two dimensions clusters of interacting nanoparticles via size-tunable, virtual magnetic traps. We use cylindrical Bloch walls arranged to form a triangular lattice of ferromagnetic domains within an epitaxially grown ferrite garnet film. At each domain, the magnetic stray field generates an effective harmonic potential with a field tunable stiffness. The experiments are combined with theory to show that the magnetic confinement is effectively harmonic and pairwise interactions are of dipolar nature, leading to central, strictly repulsive forces. For clusters of magnetic nanoparticles, the stationary collective states arise from the competition between repulsion, confinement and the tendency to fill the central potential well. Using a numerical simulation model as a quantitative map between the experiments and theory we explore the field-induced crystallization process for larger clusters and unveil the existence of three different dynamical regimes. The present method provides a model platform for investigations of the collective phenomena emerging when strongly confined nanoparticle clusters are forced to move in an idealized, harmonic-like potential.


2021 ◽  
Vol 927 ◽  
Author(s):  
Francesco Romanò ◽  
Pierre-Emmanuel des Boscs ◽  
Hendrik C. Kuhlmann

The slow motion of a small buoyant sphere near a right dihedral corner made by tangentially sliding walls is investigated. Under creeping-flow conditions the force and torque on the sphere can be decomposed into eleven elementary types of motion involving simple particle translations, particle rotations and wall movements. Force and torque balances are employed to find the velocity and rotation of the particle as functions of its location. Depending on the ratio of the wall velocities and the gravitational settling velocity of the sphere, different dynamical regimes are identified. In particular, a non-trivial line attractor/repeller for the particle motion exists at a location detached from both the walls. The existence, location and stability of the corresponding two-dimensional fixed point are studied depending on the wall velocities and the buoyancy force. The impact of the line attractors/repellers on the motion of small particles in cavities and its relevance for corner cleaning applications are discussed.


2021 ◽  
Vol 31 (8) ◽  
pp. 083103
Author(s):  
V. V. Klinshov ◽  
S. Yu. Kirillov ◽  
V. I. Nekorkin ◽  
M. Wolfrum
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document