local homeomorphism
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2382
Author(s):  
Susmit Bagchi

In general, the braid structures in a topological space can be classified into algebraic forms and geometric forms. This paper investigates the properties of a braid structure involving 2-simplices and a set of directed braid-paths in view of algebraic as well as geometric topology. The 2-simplices are of the cyclically oriented variety embedded within the disjoint topological covering subspaces where the finite braid-paths are twisted as well as directed. It is shown that the generated homotopic simplicial braids form Abelian groups and the twisted braid-paths successfully admit several varieties of twisted discrete path-homotopy equivalence classes, establishing a set of simplicial fibers. Furthermore, a set of discrete-loop fundamental groups are generated in the covering spaces where the appropriate weight assignments generate multiplicative group structures under a variety of homological formal sums. Interestingly, the resulting smallest non-trivial group is not necessarily unique. The proposed variety of homological formal sum exhibits a loop absorption property if the homotopy path-products are non-commutative. It is considered that the topological covering subspaces are simply connected under embeddings with local homeomorphism maintaining generality.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 783
Author(s):  
Susmit Bagchi

The interplay of symmetry of algebraic structures in a space and the corresponding topological properties of the space provides interesting insights. This paper proposes the formation of a predicate evaluated P-separation of the subspace of a topological (C, R) space, where the P-separations form countable and finite number of connected components. The Noetherian P-separated subspaces within the respective components admit triangulated planar convexes. The vertices of triangulated planar convexes in the topological (C, R) space are not in the interior of the Noetherian P-separated open subspaces. However, the P-separation points are interior to the respective locally dense planar triangulated convexes. The Noetherian P-separated subspaces are surjectively identified in another topological (C, R) space maintaining the corresponding local homeomorphism. The surjective identification of two triangulated planar convexes generates a quasiloop–quasigroupoid hybrid algebraic variety. However, the prime order of the two surjectively identified triangulated convexes allows the formation of a cyclic group structure in a countable discrete set under bijection. The surjectively identified topological subspace containing the quasiloop–quasigroupoid hybrid admits linear translation operation, where the right-identity element of the quasiloop–quasigroupoid hybrid structure preserves the symmetry of distribution of other elements. Interestingly, the vertices of a triangulated planar convex form the oriented multiplicative group structures. The surjectively identified planar triangulated convexes in a locally homeomorphic subspace maintain path-connection, where the right-identity element of the quasiloop–quasigroupoid hybrid behaves as a point of separation. Surjectively identified topological subspaces admitting multiple triangulated planar convexes preserve an alternative form of topological chained intersection property.


2020 ◽  
Vol 13 (4) ◽  
pp. 325-360
Author(s):  
Chang-Yu Guo ◽  
Stanislav Hencl ◽  
Ville Tengvall

AbstractWe study the branch set of a mapping between subsets of {\mathbb{R}^{n}}, i.e., the set where a given mapping is not defining a local homeomorphism. We construct several sharp examples showing that the branch set or its image can have positive measure.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 450 ◽  
Author(s):  
Susmit Bagchi

In general, the group decompositions are formulated by employing automorphisms and semidirect products to determine continuity and compactification properties. This paper proposes a set of constructions of novel topological decompositions of groups and analyzes the behaviour of group actions under the topological decompositions. The proposed topological decompositions arise in two varieties, such as decomposition based on topological fibers without projections and decomposition in the presence of translated projections in topological spaces. The first variety of decomposition introduces the concepts of topological fibers, locality of group operation and the partitioned local homeomorphism resulting in formulation of transitions and symmetric surjection within the topologically decomposed groups. The reformation of kernel under decomposed homeomorphism and the stability of group action with the existence of a fixed point are analyzed. The first variety of decomposition does not require commutativity maintaining generality. The second variety of projective topological decomposition is formulated considering commutative as well as noncommutative projections in spaces. The effects of finite translations of topologically decomposed groups under projections are analyzed. Moreover, the embedding of a decomposed group in normal topological spaces is formulated in this paper. It is shown that Schoenflies homeomorphic embeddings preserve group homeomorphism in the decomposed embeddings within normal topological spaces. This paper illustrates that decomposed group embedding in normal topological spaces is separable. The applications aspects as well as parametric comparison of group decompositions based on topology, direct product and semidirect product are included in the paper.


2017 ◽  
Vol 42 (4) ◽  
pp. 653-663 ◽  
Author(s):  
Majid Kowkabi ◽  
Behrooz Mashayekhy ◽  
Hamid Torabi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document