scholarly journals Topological Properties of Braid-Paths Connected 2-Simplices in Covering Spaces under Cyclic Orientations

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2382
Author(s):  
Susmit Bagchi

In general, the braid structures in a topological space can be classified into algebraic forms and geometric forms. This paper investigates the properties of a braid structure involving 2-simplices and a set of directed braid-paths in view of algebraic as well as geometric topology. The 2-simplices are of the cyclically oriented variety embedded within the disjoint topological covering subspaces where the finite braid-paths are twisted as well as directed. It is shown that the generated homotopic simplicial braids form Abelian groups and the twisted braid-paths successfully admit several varieties of twisted discrete path-homotopy equivalence classes, establishing a set of simplicial fibers. Furthermore, a set of discrete-loop fundamental groups are generated in the covering spaces where the appropriate weight assignments generate multiplicative group structures under a variety of homological formal sums. Interestingly, the resulting smallest non-trivial group is not necessarily unique. The proposed variety of homological formal sum exhibits a loop absorption property if the homotopy path-products are non-commutative. It is considered that the topological covering subspaces are simply connected under embeddings with local homeomorphism maintaining generality.

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 783
Author(s):  
Susmit Bagchi

The interplay of symmetry of algebraic structures in a space and the corresponding topological properties of the space provides interesting insights. This paper proposes the formation of a predicate evaluated P-separation of the subspace of a topological (C, R) space, where the P-separations form countable and finite number of connected components. The Noetherian P-separated subspaces within the respective components admit triangulated planar convexes. The vertices of triangulated planar convexes in the topological (C, R) space are not in the interior of the Noetherian P-separated open subspaces. However, the P-separation points are interior to the respective locally dense planar triangulated convexes. The Noetherian P-separated subspaces are surjectively identified in another topological (C, R) space maintaining the corresponding local homeomorphism. The surjective identification of two triangulated planar convexes generates a quasiloop–quasigroupoid hybrid algebraic variety. However, the prime order of the two surjectively identified triangulated convexes allows the formation of a cyclic group structure in a countable discrete set under bijection. The surjectively identified topological subspace containing the quasiloop–quasigroupoid hybrid admits linear translation operation, where the right-identity element of the quasiloop–quasigroupoid hybrid structure preserves the symmetry of distribution of other elements. Interestingly, the vertices of a triangulated planar convex form the oriented multiplicative group structures. The surjectively identified planar triangulated convexes in a locally homeomorphic subspace maintain path-connection, where the right-identity element of the quasiloop–quasigroupoid hybrid behaves as a point of separation. Surjectively identified topological subspaces admitting multiple triangulated planar convexes preserve an alternative form of topological chained intersection property.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anamaría Font ◽  
Bernardo Fraiman ◽  
Mariana Graña ◽  
Carmen A. Núñez ◽  
Héctor Parra De Freitas

Abstract Compactifications of the heterotic string on special Td/ℤ2 orbifolds realize a landscape of string models with 16 supercharges and a gauge group on the left-moving sector of reduced rank d + 8. The momenta of untwisted and twisted states span a lattice known as the Mikhailov lattice II(d), which is not self-dual for d > 1. By using computer algorithms which exploit the properties of lattice embeddings, we perform a systematic exploration of the moduli space for d ≤ 2, and give a list of maximally enhanced points where the U(1)d+8 enhances to a rank d + 8 non-Abelian gauge group. For d = 1, these groups are simply-laced and simply-connected, and in fact can be obtained from the Dynkin diagram of E10. For d = 2 there are also symplectic and doubly-connected groups. For the latter we find the precise form of their fundamental groups from embeddings of lattices into the dual of II(2). Our results easily generalize to d > 2.


1988 ◽  
Vol 30 (3) ◽  
pp. 331-337 ◽  
Author(s):  
M. A. Armstrong

The Bass–Serre theorem supplies generators and relations for a group of automorphisms of a tree. Recently K. S. Brown [2] has extended the result to produce a presentation for a group of automorphisms of a simply connected complex, the extra ingredient being relations which come from the 2-cells of the complex. Suppose G is the group, K the complex and L the 1-skeleton of K. Then an extension of π1(L) by G acts on the universal covering space of L (which is of course a tree) and Brown's technique is to apply the work of Bass and Serre to this action. Our aim is to give a direct elementary proof of Brown's theorem which makes no use of covering spaces, deals with the Bass–Serre theorem as a special case and clarifies the roles played by the various generators and relations.


1992 ◽  
Vol 122 (1-2) ◽  
pp. 127-135 ◽  
Author(s):  
John W. Rutter

SynopsisWe give here an abelian kernel (central) group extension sequence for calculating, for a non-simply-connected space X, the group of pointed self-homotopy-equivalence classes . This group extension sequence gives in terms of , where Xn is the nth stage of a Postnikov decomposition, and, in particular, determines up to extension for non-simplyconnected spaces X having at most two non-trivial homotopy groups in dimensions 1 and n. We give a simple geometric proof that the sequence splits in the case where is the generalised Eilenberg–McLane space corresponding to the action ϕ: π1 → aut πn, and give some information about the class of the extension in the general case.


2007 ◽  
Vol 17 (01) ◽  
pp. 115-139 ◽  
Author(s):  
L. MAGNIN

Integrable complex structures on indecomposable 6-dimensional nilpotent real Lie algebras have been computed in a previous paper, along with normal forms for representatives of the various equivalence classes under the action of the automorphism group. Here we go to the connected simply connected Lie group G0 associated to such a Lie algebra 𝔤. For each normal form J of integrable complex structures on 𝔤, we consider the left invariant complex manifold G = (G0, J) associated to G0 and J. We explicitly compute a global holomorphic chart for G and we write down the multiplication in that chart.


Author(s):  
John W. Rutter

Exact sequences, which were subsequently used for calculating the group ℰ(X) of homotopy classes of self-homotopy equivalences of a space X, were given by Barcus and Barratt (§5 of (1)) in the case where X is obtained from a simply-connected (q + 1 > 1)-dimensional complex by adding one (q + l)-cell (q ≥ 3): these were later extended by Kudo and Tsuchida (theorems 2·2 and 2·8 of (6)) and by the author (theorem 3·1* of (15)), who also obtained a related sequence (theorem 2·3* of (15)). In the case of a two-cell complex, one or more of these sequences has been shown to split by Oka, Sawashita and Sugawara (theorems 3·9, 3·13 and 3·15 of (11)). The sequences have been used to calculate ℰ (X) for a number of complexes having two, three or more cells by various authors, including Oka (8), Oka, Sawashita and Sugawara (11), Rutter (17) and Sawashita (18). However the aforementioned sequences are only applicable to the addition of top-dimensional cells if the complex has no cells in its penultimate dimension. In this article I obtain sequences which are applicable without this latter restriction, show that one of them is generally split, and in special cases where there is only one top-dimensional cell obtain a further splitting: sequences are given which are valid without the assumption that A is simply connected. Also I give a new formula for calculating ℰ(X)in the case where X is not 2-connected.


2000 ◽  
Vol 02 (01) ◽  
pp. 75-86 ◽  
Author(s):  
FUQUAN FANG ◽  
XIAOCHUN RONG

We prove a vanishing theorem of certain cohomology classes for an 2n-manifold of finite fundamental group which admits a fixed point free circle action. In particular, it implies that any Tk-action on a compact symplectic manifold of finite fundamental group has a non-empty fixed point set. The vanishing theorem is used to prove two finiteness results in which no lower bound on volume is assumed. (i) The set of symplectic n-manifolds of finite fundamental groups with curvature, λ ≤ sec ≤ Λ, and diameter, diam ; ≤ d, contains only finitely many diffeomorphism types depending only on n, λ, Λ and d. (ii) The set of simply connected n-manifolds (n ≤ 6) with λ ≤ sec ≤ Λ and diam ≤ d contains only finitely many diffeomorphism types depending only on n, λ, Λ and d.


Sign in / Sign up

Export Citation Format

Share Document