geodesic triangle
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Jenő Szirmai

Abstract In the present paper we study $\mathbf{S}^2\!\times\!\mathbf{R}$ and $\mathbf{H}^2\!\times\!\mathbf{R}$ geometries, which are homogeneous Thurston 3-geometries. We define and determine the generalized Apollonius surfaces and with them define the ‘surface of a geodesic triangle’. Using the above Apollonius surfaces we develop a procedure to determine the centre and the radius of the circumscribed geodesic sphere of an arbitrary $\mathbf{S}^2\!\times\!\mathbf{R}$ and $\mathbf{H}^2\!\times\!\mathbf{R}$ tetrahedron. Moreover, we generalize the famous Menelaus’s and Ceva’s theorems for geodesic triangles in both spaces. In our work we will use the projective model of $\mathbf{S}^2\!\times\!\mathbf{R}$ and $\mathbf{H}^2\!\times\!\mathbf{R}$ geometries described by E. Molnár in [6].


2019 ◽  
Vol 952 (10) ◽  
pp. 10-20
Author(s):  
G.G. Shevshenko

The author provides information about the search methods of adjustment and assessment of the elementary geodetic constructions accuracy on the example of a geodesic triangle under various initial conditions. An algorithm for combining Powell and DSC search methods used to solve the problem posed in the article is given. To equalize the geodesic constructions under consideration by the search method, a program for finding the minimum of the objective function is made, it implements the algorithm described in the article. This program works in the Microsoft Excel format as a macro recorded in the VBA language. Examples of equalization calculations are given. Accuracy assessment of the adjustment results by the search method of the geodesic triangle under different initial conditions is performed. The obtained adjustment results and accuracy estimates are compared with the calculations performed in the NW program by Professor Kougiya V. A. confirmed the correctness of the search method application.


2017 ◽  
Vol 15 (1) ◽  
pp. 800-814
Author(s):  
José M. Rodríguez ◽  
José M. Sigarreta

Abstract If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. Deciding whether or not a graph is hyperbolic is usually very difficult; therefore, it is interesting to find classes of graphs which are hyperbolic. A graph is circulant if it has a cyclic group of automorphisms that includes an automorphism taking any vertex to any other vertex. In this paper we prove that infinite circulant graphs and their complements are hyperbolic. Furthermore, we obtain several sharp inequalities for the hyperbolicity constant of a large class of infinite circulant graphs and the precise value of the hyperbolicity constant of many circulant graphs. Besides, we give sharp bounds for the hyperbolicity constant of the complement of every infinite circulant graph.


10.37236/5315 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Álvaro Martínez-Pérez

Let $G$ be a graph with the usual shortest-path metric. A graph is $\delta$-hyperbolic if for every geodesic triangle $T$, any side of $T$ is contained in a $\delta$-neighborhood of the union of the other two sides. A graph is chordal if every induced cycle has at most three edges. In this paper we study the relation between the hyperbolicity of the graph and some chordality properties which are natural generalizations of being chordal. We find chordality properties that are weaker and stronger than being $\delta$-hyperbolic. Moreover, we obtain a characterization of being hyperbolic on terms of a chordality property on the triangles.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Kun-Lin Wu ◽  
Ting-Jui Ho ◽  
Sean A. Huang ◽  
Kuo-Hui Lin ◽  
Yueh-Chen Lin ◽  
...  

In this paper, mobile robot navigation on a 3D terrain with a single obstacle is addressed. The terrain is modelled as a smooth, complete manifold with well-defined tangent planes and the hazardous region is modelled as an enclosing circle with a hazard grade tuned radius representing the obstacle projected onto the terrain to allow efficient path-obstacle intersection checking. To resolve the intersections along the initial geodesic, by resorting to the geodesic ideas from differential geometry on surfaces and manifolds, we present a geodesic-based planning and replanning algorithm as a new method for obstacle avoidance on a 3D terrain without using boundary following on the obstacle surface. The replanning algorithm generates two new paths, each a composition of two geodesics, connected via critical points whose locations are found to be heavily relying on the exploration of the terrain via directional scanning on the tangent plane at the first intersection point of the initial geodesic with the circle. An advantage of this geodesic path replanning procedure is that traversability of terrain on which the detour path traverses could be explored based on the local Gauss-Bonnet Theorem of the geodesic triangle at the planning stage. A simulation demonstrates the practicality of the analytical geodesic replanning procedure for navigating a constant speed point robot on a 3D hill-like terrain.


Filomat ◽  
2016 ◽  
Vol 30 (9) ◽  
pp. 2599-2607 ◽  
Author(s):  
Sergio Bermudo ◽  
Walter Carballosa ◽  
José Rodríguez ◽  
José Sigarreta

If X is a geodesic metric space and x1, x2, x3 ( X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is ?-hyperbolic (in the Gromov sense) if any side of T is contained in a ?-neighborhood of the union of the other two sides, for every geodesic triangle T in X. An important problem in the study of hyperbolic graphs is to relate the hyperbolicity with some classical properties in graph theory. In this paper we find a very close connection between hyperbolicity and chordality: we extend the classical definition of chordality in two ways, edge-chordality and path-chordality, in order to relate this propertywith Gromov hyperbolicity. In fact, we prove that every edge-chordal graph is hyperbolic and that every hyperbolic graph is path-chordal. Furthermore, we prove that every path-chordal cubic graph with small path-chordality constant is hyperbolic.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Juan C. Hernández ◽  
José M. Rodríguez ◽  
José M. Sigarreta

IfXis a geodesic metric space andx1,x2,x3∈X, ageodesic triangle  T={x1,x2,x3}is the union of the three geodesics[x1x2],[x2x3], and[x3x1]inX. The spaceXisδ-hyperbolic(in the Gromov sense) if any side ofTis contained in aδ-neighborhood of the union of the two other sides, for every geodesic triangleTinX. The study of the hyperbolicity constant in networks is usually a very difficult task; therefore, it is interesting to find bounds for particular classes of graphs. A network is circulant if it has a cyclic group of automorphisms that includes an automorphism taking any vertex to any other vertex. In this paper we obtain several sharp inequalities for the hyperbolicity constant of circulant networks; in some cases we characterize the graphs for which the equality is attained.


10.37236/3271 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Walter Carballosa ◽  
Rocío M. Casablanca ◽  
Amauris De la Cruz ◽  
José M. Rodríguez

If X is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-hyperbolic $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. If $X$ is hyperbolic, we denote by $\delta (X)$ the sharp hyperbolicity constant of $X$, i.e., $\delta (X)=\inf\{\delta\geq 0: \, X \, \text{ is $\delta$-hyperbolic}\,\}\,.$ In this paper we characterize the strong product of two graphs $G_1\boxtimes G_2$ which are hyperbolic, in terms of $G_1$ and $G_2$: the strong product graph $G_1\boxtimes G_2$ is hyperbolic if and only if one of the factors is hyperbolic and the other one is bounded. We also prove some sharp relations between $\delta (G_1\boxtimes G_2)$, $\delta (G_1)$, $\delta (G_2)$ and the diameters of $G_1$ and $G_2$ (and we find families of graphs for which the inequalities are attained). Furthermore, we obtain the exact values of the hyperbolicity constant for many strong product graphs.


2013 ◽  
Vol 15 (03) ◽  
pp. 1350007
Author(s):  
XIAOLE SU ◽  
HONGWEI SUN ◽  
YUSHENG WANG

Let △p1p2p3 be a geodesic triangle on M, a complete 2-dimensional Riemannian manifold of curvature ≥ k, and let [Formula: see text] be its comparison triangle on [Formula: see text] (a complete and simply connected 2-dimensional manifold of constant curvature k). Our main result is that if △p1p2p3 is areable, then its area is not less than that of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document