symmetry energy
Recently Published Documents


TOTAL DOCUMENTS

802
(FIVE YEARS 133)

H-INDEX

63
(FIVE YEARS 9)

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Pedro Barata de Tovar ◽  
Márcio Ferreira ◽  
Constança Providência

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Himanshu S. Sahoo ◽  
Supriya Karan ◽  
Rabindranath Mishra ◽  
Prafulla K. Panda

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Ankit Kumar ◽  
H. C. Das ◽  
S. K. Patra
Keyword(s):  

Author(s):  
Jeet Amrit Pattnaik ◽  
R.N. Panda ◽  
M. Bhuyan ◽  
S.K. Patra

We have systematically studied the surface properties, such as symmetry energy, neutron pressure, and symmetry energy curvature coefficient for Ne, Na, Mg, Al, and Si nuclei from the proton to neutron drip-lines. The Coherent Density Fluctuation Model (CDFM) is used to estimate these quantities taking the relativistic mean-field densities as inputs. The Br ¨uckner energy density functional is taken for the nuclear matter binding energy and local density approximation is applied for its conversion to coordinate space. The symmetry energy again decomposed to the volume and surface components within the liquid drop model formalism to the volume and surface parts separately. Before calculating the surface properties of finite nuclei, the calculated bulk properties are compared with the experimental data, whenever available. The NL3* parameter set with the BCS pairing approach in an axially deformed frame-work is used to take care of the pairing correlation when needed. The deformed density is converted to its spherical equivalent with a two Gaussian fitting, which is used as an input for the calculation of weight function in the CDFM approximation. With the help of the symmetry energy for the recently isotopes <sup>29</sup>F, <sup>28</sup>Ne, <sup>29,30</sup>Na and <sup>31,35,36</sup>Mg are considered to be within the island of inversion emphasized [Phys. Lett. B 772, 529 (2017)]. Although we get large symmetric energies corresponding to a few neutron numbers for this isotopic chain as expected, an irregular trend appears for all these considered nuclei. The possible reason behind this abnormal behavior of symmetry energy for these lighter mass nuclei is also included in the discussion, which gives a direction for future analysis.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2172
Author(s):  
Yongjia Wang ◽  
Zepeng Gao ◽  
Qingfeng Li

Initial fluctuation is one of the ingredients that washes fingerprints of the nuclear symmetry energy on observables in heavy-ion collisions. By artificially using the same initial nuclei in all collision events, the effect of the initial fluctuation on isospin-sensitive observables, e.g., the yield ratio of free neutrons with respect to protons Nn/Np, 3H/3He yield ratio, the yield ratio between charged pions π−/π+, and the elliptic flow ratio or difference between free neutrons and protons v2n/v2p (v2n-v2p), are studied within the ultrarelativistic quantum molecular dynamics (UrQMD) model. In practice, Au + Au collisions with impact parameter b = 5 fm and beam energy Elab = 400 MeV/nucleon are calculated. It is found that the effect of the initialization on the yields of free protons and neutrons is small, while for the yield of pions, the directed and elliptic flows are found to be apparently influenced by the choice of initialization because of the strong memory effects. Regarding the isospin-sensitive observables, the effect of the initialization on Nn/Np and 3H/3He is negligible, while π−/π+ and v2n/v2p (v2n-v2p) display a distinct difference among different initializations. The fingerprints of symmetry energy on π−/π+ and v2n/v2p can be either enhanced or reduced when different initializations are utilized.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2116
Author(s):  
Claudio O. Dorso ◽  
Guillermo Frank ◽  
Jorge A. López

In this article we present a classical potential that respects the Pauli exclusion principle and can be used to describe nucleon-nucleon interactions at intermediate energies. The potential depends on the relative momentum of the colliding nucleons and reduces interactions at low momentum transfer mimicking the Pauli exclusion principle. We use the potential with Metropolis Monte Carlo methods and study the formation of finite nuclei and infinite systems. We find good agreement in terms of the binding energies, radii, and internal nucleon distribution of finite nuclei, and the binding energy in nuclear matter and neutron star matter, as well as the formation of nuclear pastas, and the symmetry energy of neutron star matter.


2021 ◽  
Vol 127 (19) ◽  
Author(s):  
Reed Essick ◽  
Ingo Tews ◽  
Philippe Landry ◽  
Achim Schwenk
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document