fictitious domain method
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 30)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 74 (2) ◽  
pp. 5-12
Author(s):  
S. Kasenov ◽  
◽  
A.N. Temirbekov ◽  
A.ZH. Satybaev ◽  
L.N. Temirbekova ◽  
...  

The article shows the ways of applying the method of fictitious domains in solving problems for ordinary differential equations. In the introduction, a small review of the literature on this method, as well as methods for the numerical solution of these problems, is made. The problem statement for the method of fictitious domains for ordinary differential equations is considered. Further, the inequality of estimates was shown. The solution of the auxiliary problem approximates the solution of the original problem with a certain accuracy. The inequality of estimates is obtained in the class of generalized solutions. For the purpose of visual application of the fictitious domain method in problems, a boundary value problem for a one-dimensional nonlinear ordinary differential equation is considered. The problem was written in the form of a difference scheme and led to a solution using the sweep method. In the numerical solution of the problem, numerical calculations were carried out for various values of the parameter included in the auxiliary problem, based on the method of fictitious domains. The numbers of iterations, execution time, and graphs of these calculations are presented and analyzed.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 218
Author(s):  
Bing-Rui Liu ◽  
Jian-Zhong Lin ◽  
Xiao-Ke Ku

Effect of rheological property on the migration and alignment of three interacting particles in Poiseuille flow of Giesekus fluids is studied with the direct-forcing fictitious domain method for the Weissenberg number (Wi) ranging from 0.1 to 1.5, the mobility parameter ranging from 0.1 to 0.7, the ratio of particle diameter to channel height ranging from 0.2 to 0.4, the ratio of the solvent viscosity to the total viscosity being 0.3 and the initial distance (y0) of particles from the centerline ranging from 0 to 0.2. The results showed that the effect of y0 on the migration and alignment of particles is significant. The variation of off-centerline (y0 ≠ 0) particle spacing is completely different from that of on-centerline (y0 = 0) particle spacing. As the initial vertical distance y0 increased, the various types of particle spacing are more diversified. For the off-centerline particle, the change of particle spacing is mainly concentrated in the process of cross-flow migration. Additionally, the polymer extension is proportional to both the Weissenberg number and confinement ratio. The bigger the Wi and confinement ratio is, the bigger the increment of spacing is. The memory of shear-thinning is responsible for the reduction of d1. Furthermore, the particles migrate abnormally due to the interparticle interaction.


Sign in / Sign up

Export Citation Format

Share Document